FULL PAPER
[13] D. J. Arriola, E. M. Carnahan, P. D. Hustad, R. L. Kuhlman,
T. T. Wenzel, Science 2006, 312, 714–719.
[14] G. J. P. Britovsek, S. A. Cohen, V. C. Gibson, P. J. Maddox, M.
van Meurs, Angew. Chem. Int. Ed. 2002, 41, 489–491; Angew.
Chem. 2002, 114, 507–509.
[15] G. J. P. Britovsek, S. A. Cohen, V. C. Gibson, M. Van Meurs,
J. Am. Chem. Soc. 2004, 126, 10701–10712.
6 H, N(CH2CH3)2]; 2.35 [q, J = 7.2 Hz, 4 H, N(CH2CH3)2]; 2.43
(s, 12 H, ArCH3); 6.85–7.00 (m, 6 H, ArH) ppm. 13C NMR
(75.4 MHz, C6D6): δ = 11.7 [N(CH2CH3)2]; 19.6 (ArCH3); 41.6
[N(CH2CH3)2]; 127.3, 129.3, 132.8, 147.1 (ArC) 167.0 (NCN) ppm.
C21H28Cl3N3Ti (476.69): calcd. C 52.91, H 5.92, N 8.81; found C
52.77, H 6.00, N 8.88.
[16] F. Deplace, Z. Wang, N. a. Lynd, A. Hotta, J. M. Rose, P. D.
Hustad, J. Tian, H. Ohtaki, G. W. Coates, F. Shimizu, K. Hiro-
kane, F. Yamada, Y.-W. Shin, L. Rong, J. Zhu, S. Toki, B. S.
Hsiao, G. H. Frederickson, E. J. Kramer, J. Polym. Sci., Part B
Polym. Phys. 2010, 48, 1428–1437.
[17] A. Hotta, E. Cochran, J. Ruokolainen, V. Khanna, G. H. Fred-
rickson, E. J. Kramer, Y.-W. Shin, F. Shimizu, A. E. Cherian,
P. D. Hustad, J. M. Rose, G. W. Coates, Proc. Natl. Acad . Sci.
USA 2006, 103, 15327–32.
[18] P. D. Hustad, R. L. Kuhlman, E. M. Carnahan, T. T. Wenzel,
D. J. Arriola, Macromolecules 2008, 41, 4081–4089.
[19] P. D. Hustad, R. L. Kuhlman, D. J. Arriola, E. M. Carnahan,
T. T. Wenzel, Macromolecules 2007, 40, 7061–7064.
[20] P. D. Hustad, G. R. Marchand, E. I. Garcia-Meitin, P. L. Rob-
erts, J. D. Weinhold, Macromolecules 2009, 42, 3788–3794.
[21] H. Kaneyoshi, Y. Inoue, K. Matyjaszewski, Macromolecules
2005, 38, 5425–5435.
Synthesis of Complex 4b: Compound 4b was prepared similarly to
4a by using 3b (500 mg, 1.05 mmol) and MeMgCl (1.05 mL,
3.15 mmol). Yield 390 mg (78%). H NMR (300 MHz, C6D6): δ =
0.30 [t, J = 7.2 Hz, 6 H, N(CH2CH3)2]; 1.72 [s, J = 7.2 Hz, 6 H,
Ti(CH3)3], 2.35 (s, 12 H, ArCH3), 6.80–7.10 (m, 6 H, ArH) ppm.
13C NMR (75.4 MHz, C6D6): δ = 11.7 [N(CH2CH3)2]; 19.3
(ArCH3), 40.4 [N(CH2CH3)2]; 71.8 [Ti(CH3)3], 124.5, 129.0, 132.9,
146.3 (ArC), 169.9 (NCN) ppm. C24H37N3Ti (415.44): calcd. C
69.39, H 8.98, N 10.11; found C 68.94, H 9.17, N 10.11.
1
Synthesis of Complex 3c: Compound 2c (456 mg, 2.25 mmol) and
[(Et2N)TiCl3] (510 mg, 2.25 mmol) were dissolved in toluene and
stirred overnight, whereby a crystalline solid precipitated. Dark red
crystals suitable for single-crystal analysis could be obtained from
a concentrated chloroform solution at room temperature. Yield
850 mg (88%). 1H NMR (300 MHz, CD2Cl2): δ = 1.03 [t, J =
7.1 Hz, 6 H, N(CH2CH3)2]; 1.70 [s, 9 H, C(CH3)3]; 2.30 (s, 6 H,
ArCH3); 3.00 [q, J = 7.2 Hz, 4 H, N(CH2CH3)2]; 7.06 (s, 3 H, ArH)
ppm. 13C NMR (100 MHz, CD2Cl2): δ = 12.8 [N(CH2CH3)2]; 19.7
(ArCH3), 31.5 [C(CH3)3]; 43.5 [N(CH2CH3)2]; 59.0 [C(CH3)3]
127.3, 129.0, 132.5, 152.0 (ArC), 170.3 (NCN) ppm.
C17H28Cl3N3Ti (428.65): calcd. C 47.63, H 6.58, N 9.80; found C
47.57, H 6.43, N 9.76.
[22] S. Li, R. A. Register, B. G. Landes, P. D. Hustad, J. D. Wein-
hold, Macromolecules 2010, 43, 4761–4770.
[23] J. O. Ring, R. Thomann, R. Mülhaupt, J.-M. Raquez, P. Degée,
P. Dubois, Macromol. Chem. Phys. 2007, 208, 896–902.
[24] M. van Meurs, G. J. P. Britovsek, V. C. Gibson, S. A. Cohen, J.
Am. Chem. Soc. 2005, 127, 9913–9923.
[25] W. Zhang, J. Wei, L. R. Sita, Macromolecules 2008, 41, 7829–
7833.
[26] G. C. Bazan, J. S. Rogers, C. C. Fang, Organometallics 2001,
20, 2059–2064.
[27] C. Boisson, V. Monteil, D. Ribour, R. Spitz, F. Barbotin,
Macromol. Chem. Phys. 2003, 204, 1747–1754.
[28] C. Döring, W. P. Kretschmer, R. Kempe, Eur. J. Inorg. Chem.
2010, 18, 2853–2860.
Supporting Information (see footnote on the first page of this arti-
cle): Crystallographic details and high-temperature 1H NMR spec-
trum of the obtained PE.
[29] M. Ganesan, F. P. Gabbaï, J. Organomet. Chem. 2005, 690,
5145–5149.
Acknowledgments
[30] I. Haas, W. P. Kretschmer, R. Kempe, Organometallics 2011,
30, 4854–4861.
[31] C. J. Han, M. S. Lee, D.-J. Byun, S. Y. Kim, Macromolecules
2002, 35, 8923–8925.
[32] W. P. Kretschmer, T. Bauer, B. Hessen, R. Kempe, Dalton
Trans. 2010, 39, 6847–6852.
This work was supported by NANOCAT, international graduate-
program within the Elitenetzwerk Bayern, and by SASOL Ger-
many GmbH.
[33] W. P. Kretschmer, A. Meetsma, B. Hessen, T. Schmalz, S.
Qayyum, R. Kempe, Chem. Eur. J. 2006, 12, 8969–8978.
[34] R. L. Kuhlman, T. T. Wenzel, Macromolecules 2008, 41, 4090–
4094.
[1] F. S. Bates, M. a. Hillmyer, T. P. Lodge, C. M. Bates, K. T. De-
laney, G. H. Fredrickson, Science 2012, 336, 434–440.
[2] R. Kempe, Chem. Eur. J. 2007, 13, 2764–2773.
[3] L. R. Sita, Angew. Chem. Int. Ed. 2009, 48, 2464–2472; Angew.
Chem. 2009, 121, 2500–2508.
[4] A. Valente, A. Mortreux, M. Visseaux, P. Zinck, Chem. Rev.
2013, 113, 3836–3857.
[5] E. Samsel, EP 0539876, 1992.
[6] E. Samsel, D. Eisenberg, EP 0574854, 1993.
[7] T. Chenal, X. Olonde, J.-F. Pelletier, K. Bujadoux, A. Mor-
treux, Polymer 2007, 48, 1844–1856.
[8] W. Kaminsky, Ed. 1999, DOI: 10.1007/978–3–642–60178–1.
[9] X. Olonde, A. Mortreux, F. Petit, K. Bujadoux, J. Mol. Catal.
1993, 82, 75–82.
[35] G. Mani, F. P. Gabbaï, Angew. Chem. Int. Ed. 2004, 43, 2263–
2266; Angew. Chem. 2004, 116, 2313–2316.
[36] J. Obenauf, W. P. Kretschmer, T. Bauer, R. Kempe, Eur. J. In-
org. Chem. 2013, 537–544.
[37] S. K. T. Pillai, W. P. Kretschmer, M. Trebbin, S. Förster, R.
Kempe, Chem. Eur. J. 2012, 18, 13974–13978.
[38]
[39]
J. S. Rogers, G. C. Bazan, Chem. Commun. 2000, 2, 1209–1210.
F. Rouholahnejad, D. Mathis, P. Chen, Organometallics 2010,
29, 294–302.
[40]
[41]
[42]
[43]
M. Bochmann, S. J. Lancaster, Angew. Chem. Int. Ed. Engl.
1994, 33, 1634–1637; Angew. Chem. 1994, 106, 1715.
M. Bochmann, S. Lancaster, J. Organomet. Chem. 1995, 497,
55–59.
R. A. Petros, J. R. Norton, Organometallics 2004, 23, 5105–
5107.
[10] J.-F. Pelletier, K. Bujadoux, X. Olonde, E. Adisson, A. Mor-
treux, T. Chenal, US 5779942, 1995.
[11] J. F. Pelletier, A. Mortreux, F. Petit, X. Olonde, K. Bujadoux,
Catalyst Design for Tailor-Made Polyolefins. Studies in Surface
Science and Catalysis, vol. 89 (Eds.: K. Soga, M. Terano), Kod-
ansha and Elsevier, Tokyo and Amsterdam, 1994.
[12] J.-F. Pelletier, A. Mortreux, X. Olonde, K. Bujadoux, Angew.
Chem. Int. Ed. Engl. 1996, 35, 1854–1856; Angew. Chem. 1996,
108, 1980–1982.
J. M. Camara, R. A. Petros, J. R. Norton, J. Am. Chem. Soc.
2011, 133, 5263–5273.
[44]
[45]
K. Michiue, R. F. Jordan, Organometallics 2004, 23, 460–470.
S. Murtuza, O. L. Casagrande, R. F. Jordan, Organometallics
2002, 21, 1882–1890.
Eur. J. Inorg. Chem. 2014, 1446–1453
1452
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim