Recently, several classes of peptide molecules have been
identified that are water-soluble and undergo facilitated
uptake into cells and tissues.11 Among these molecular
transporters, peptide sequences found in HIV-tat and in
Antennapedia have shown high membrane translocation
efficiencies.12 Extensive structure-function studies of the
HIV-tat transporter sequence (RKKRRQRRR) have led to
the finding that short oligomers of arginine- (R7-9) and, more
specifically, guanidinium-based oligomers often exhibit
superior membrane translocation activity.13 Importantly, these
homo-oligomers can be prepared in a more cost-efficient
manner than conventional hetero-oligomers by using a
segment-doubling strategy.14 Of special note, the arginine-
based transporters have also been shown to penetrate human
skin, leading to the entry of a releasable oligo-arginine
Cyclosporin A conjugate into human trials for the treatment
of dermatological disorders.15 In contrast to simple solubi-
lizing functionalities, a particularly significant property of
these transporters is that they both enhance water solubility
and facilitate uptake through the nonpolar bilayer of a cell.
This obviously represents a potentially useful strategy for
improving the formulation and bioavailability of drugs such
as taxol. To explore this strategy, an efficient and flexible
procedure for the conjugation of taxol to arginine-based
transporters is required. In addition to being compatible with
Scheme 1. Chloroacetylation of Taxola
a Reagents and conditions: (a) (ClAc)2O, DIEA, DCM, rt,
quantitative.
the sensitive functionality of taxol, this procedure would need
to be scalable and sufficiently flexible to produce taxol
conjugates with tunable half-lives for release under physi-
ological conditions. We report here a versatile procedure for
the preparation of taxol-transporter conjugates and an evalu-
ation of their ability to release free taxol in PBS buffer at
37 °C.
The strategy devised for release of taxol from the
transporter is based on the observation that taxol can be
esterified at C2′ without protection of other functional groups.
If the attached ester incorporated a suitably positioned and
protected amine (e.g., 3, Scheme 2), release of free taxol
(9) (a) Lee, J. W.; Fuchs, P. L. Org. Lett. 1999, 1, 179-181. (b) Golik,
J.; Wong, H. S. L.; Chen, S. H.; Doyle, T. W.; Wright, J. J. K.; Knipe, J.;
Rose, W. C.; Casazza, A. M.; Vyas, D. M. Bioorg. Med. Chem. Lett. 1996,
6, 1837-1842. (c) Vyas, D. M.; Wong, H.; Crosswell, A. R.; Casazza, A.
M.; Knipe, J. O.; Mamber, S. W.; Doyle, T. W. Bioorg. Med. Chem. Lett.
1993, 3, 1357-1360. (d) Guenard, D.; Gueritte-Voegelein, F.; Potier, P.
Acc. Chem. Res. 1993, 26, 160-167.
Scheme 2. Synthesis of Taxol Conjugates
(10) (a) De Bont, D. B. A.; Leenders, R. G. G.; Haisma, H. J.; van der
Meulen-Muileman, I.; Scheeren, H. W.; Bioorg. Med. Chem. Lett. 1997, 5,
4405-414. (b) Rodrigues, M. L.; Carter, P.; Wirth, C.; Mullins, S.; Lee,
A.; Blackburn, B. K. Chem. Biol. 1995, 2, 223-227. (c) Ueda, Y.; Wong,
H.; Matiskella, J. D.; Mikkikineni, A. B.; Farina, V.; Fairchild, C.; Rose,
W. C.; Mamber, S. W.; Long, B. H.; Kerns, E. H.; Casazza, A. M.; Vyas,
D. M. Bioorg. Med. Chem. Lett. 1994, 4, 1861-1864. (d) Nicolaou, K. C.;
Guy, R. K.; Pitsinos, E. N.; Wrasidlo, W. Angew. Chem., Int. Ed. Engl.
1994, 33, 3, 1583-1587. (e) Nicolaou, K. C.; Riemer, C.; Kerr, M. A.;
Rideout, D.; Wrasidlo, W. Nature 1993, 364, 464-466. (f) Ueda, Y.;
Mikkilineni, A. B.; Knipe, J. O.; Rose, W. C.; Casazza, A. M.; Vyas, D.
M. Bioorg. Med. Chem. Lett. 1993, 3, 1761-1766. (g) Zhao, Z.; Kingston,
D. G. I. J. Nat. Prod. 1991, 54, 1607-1611.
(11) Langel, U., Ed. Cell Penetrating Peptides; CRC Press: Boca Raton,
FL, 2002.
(12) (a) Lindgren, M.; Haellbrink, M.; Prochiantz, A.; Langel, Ue. Trends
Pharm. Sci. 2000, 21, 99-103. (b) Frankel, A. D.; Pabo, C. O. Cell 1988,
55, 1189-1193. (c) Bhorade, R.; Weissleder, R.; Nakakoshi, T.; Moore,
A.; Tung, C.-H. Bioconjugate Chem. 2000, 11, 301-305. (d) Josephson,
L.; Tung, C.-H.; Moore, A.; Weissleder, R. Bioconjugate Chem. 1999, 10,
186-191. (e) Fawell, S.; Seery, J.; Daikh, Y.; Moore, C.; Chen, L. L.;
Pepinsky, B.; Barsoum, J. Proc. Natl. Aca. Sci. U.S.A. 1994, 91, 664-668.
(13) (a) Mitchell, D. J.; Kim, D. T.; Steinman, L.; Fathman, C. G.;
Rothbard, J. B. J. Peptide Res. 2000, 56, 318-325. (b) Wender, P. A.;
Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J.
B. Proc. Natl. Acad. Science U.S.A. 2000, 97, 13003-13008. (c) Rothbard,
J. B.; Kreider, E.; VanDeusen, C. L.; Wright, L. R.; Wylie, B. L.; Wender,
P. A. J. Med. Chem. 2002, 45, 3612-3618. (d) Umezawa, N.; Gelman, M.
A.; Haigis, M. C.; Raines, R. T.; Gellmann, S. H. J. Am. Chem. Soc. 2002,
124, 368-369. (e) Wender, P. A.; Rothbard, J. B.; Jessop, T. C.; Kreider,
E. L.; Wylie, B. L. J. Am. Chem. Soc. 2002, 124, 13382-13383. (f) Rueping,
M.; Mahajan, Y.; Sauer, M.; Seebach, D. ChemBioChem 2002, 3, 257-
259. (g) Futaki, S.; Ohashi, W.; Suzuki, T.; Niwa, M.; Tanaka, S.; Ueda,
K.; Harashima, H.; Sugiura, Y. Bioconjugate Chem. 2001, 12, 1005-1011.
(14) Wender, P. A.; Jessop, T. C.; Pattabiraman, K.; Pelkey, E. T.;
VanDeusen, C. L. Org Lett. 2001, 3, 3229-3232.
could then be controlled by pH-dependent release of the free
amine for reaction with the C2′ ester carbonyl.16,17 The
participation of the amine in ester cleavage could also be
modulated by conversion to simple amide or other less
reactive derivatives. To explore this approach, taxol was
initially converted to the C2′ chloroacetyl derivative 2
(16) Testa, B.; Mayer, J. M. Drug Metab. ReV. 1998, 30, 787-807.
(17) Recently, a similar approach was used as a solid-phase linker
strategy: Ando, H.; Manabe, S.; Nakahara, Y.; Ito, Y. Angew. Chem., Int.
Ed. 2001, 40, 4725-4728.
(15) Rothbard, J. B.; Garlington, S.; Lin, Q.; Kirschberg, T.; Kreider,
E.; McGrane, P. L.; Wender, P. A.; Khavari, P. A. Nature Med. 2000, 6,
1253-1257.
3460
Org. Lett., Vol. 5, No. 19, 2003