18
A. M. KANHED ET AL.
Hartmann, J., Kiewert, C., Duysen, E. G., Lockridge, O., Greig, N. H., & Patel, D. V., Patel, N. R., Kanhed, A. M., Patel, S. P., Sinha, A., Kansara,
D. D., Mecwan, A. R., Patel, S. B., Upadhyay, P. N., Patel, K. B., Shah,
D. B., Prajapati, N. K., Murumkar, P. R., Patel, K. V., & Yadav, M. R.
(2019). Novel multitarget directed triazinoindole derivatives as anti-
alzheimer agents. ACS Chemical Neuroscience, 10, 3635–3661.
Patel, D. V., Patel, N. R., Kanhed, A. M., Teli, D. M., Patel, K. B., Joshi, P. D.,
Patel, S. P., Gandhi, P. M., Chaudhary, B. N., Prajapati, N. K., Patel, K. V.,
& Yadav, M. R. (2020). Novel carbazole-stilbene hybrids as multifunc-
tional anti-Alzheimer agents. Bioorganic Chemistry, 101, 103977.
Patterson, C. (2018). Alzheimer’s Disease International. ADI.
Pohanka, M. (2011). Cholinesterases, a target of pharmacology and toxi-
cology. Biomedical Papers of the Medical Faculty of Palacky University
in Olomouc, 155.
Klein, J. (2007). Excessive hippocampal acetylcholine levels in acetyl-
cholinesterase-deficient mice are moderated by butyrylcholinesterase
Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L.,
€
Grubmuller, H.,
& MacKerell Jr, A. D. (2017). CHARMM36m: An
improved force field for folded and intrinsically disordered proteins.
Kanhed, A. M., Sinha, A., Machhi, J., Tripathi, A., Parikh, Z. S., Pillai, P. P.,
Giridhar, R., & Yadav, M. R. (2015). Discovery of isoalloxazine deriva-
tives as a new class of potential anti-Alzheimer agents and their syn-
thesis. Bioorganic Chemistry, 61, 7–12.
Protein Data Bank. (2019). Retrieved August 9, 2019, from www.rcsb.org/
Kelder, J., Grootenhuis, P. D., Bayada, D. M., Delbressine, L. P.,
&
Ploemen, J.-P. (1999). Polar molecular surface as a dominating deter-
minant for oral absorption and brain penetration of drugs.
Lane, C. A., Hardy, J., & Schott, J. M. (2018). Alzheimer’s disease. European
Lane, R. M., Potkin, S. G., & Enz, A. (2006). Targeting acetylcholinesterase
and butyrylcholinesterase in dementia. The International Journal of
Neuropsychopharmacology, 9, 101–124.
€
QikProp. (2018). QikProp. Schrodinger, LLC.
Ramos, E., Palomino-Antolin, A., Bartolini, M., Iriepa, I., Moraleda, I., Diez-
Iriepa, D., Samadi, A., Cortina, C. V., Chioua, M., Egea, J., Romero, A., &
Marco-Contelles, J. (2019). QuinoxalineTacrine QT78, a Cholinesterase
inhibitor as
a potential ligand for Alzheimer’s Disease therapy.
Molecules (Basel, Switzerland), 24(8), 1503.
ꢀ
ꢀ
ꢀ
ꢀ
Rodrıguez-Franco, M. I., Fernandez-Bachiller, M. I., Perez, C., Hernandez-
ꢀ
Ledesma, B., & Bartolome, B. (2006). Novel tacrine-melatonin hybrids as
dual-acting drugs for Alzheimer disease, with improved acetylcholin-
esterase inhibitory and antioxidant properties. Journal of Medicinal
Sanner, M. F. (1999). Python: a programming language for software inte-
gration and development. Journal of Molecular Graphics and
Modelling, 17, 57–61.
Scheltens, P., Blennow, K., Breteler, M. M., de Strooper, B., Frisoni, G. B.,
Salloway, S., & Van der Flier, W. M. (2016). Alzheimer’s disease. Lancet
(London, England), 388(10043), 505–517.
Selkoe, D. J. (2003). Folding proteins in fatal ways. Nature, 426, 900.
Shidore, M., Machhi, J., Shingala, K., Murumkar, P., Sharma, M. K.,
Agrawal, N., Tripathi, A., Parikh, Z., Pillai, P., & Yadav, M. R. (2016).
Benzylpiperidine-linked diarylthiazoles as potential anti-Alzheimer’s
agents: Synthesis and biological evaluation. Journal of Medicinal
Chemistry, 59, 5823–5846.
Li, S.-Y., Wang, X.-B., Xie, S.-S., Jiang, N., Wang, K. D., Yao, H.-Q., Sun, H.-
B., & Kong, L.-Y. (2013). Multifunctional tacrine-flavonoid hybrids with
cholinergic, b-amyloid-reducing, and metal chelating properties for
the treatment of Alzheimer’s disease. European Journal of Medicinal
Ligprep. (2018). Ligprep. Schrodinger, LLC.
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997).
Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings.
Advanced Drug Delivery Reviews, 23(1–3), 3–25. [Database] https://
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxi-
dants and functional foods: Impact on human health. Pharmacognosy
ꢀ
ꢀ
ꢀ
ꢀ
Lopez-Iglesias, B., Perez, C., Morales-Garcıa, J. A., Alonso-Gil, S., Perez-
Sinha, A., Tamboli, R. S., Seth, B., Kanhed, A. M., Tiwari, S. K., Agarwal, S.,
ꢀ
Castillo, A., Romero, A., Lopez, M. G., Villarroya, M., Conde, S., &
Nair, S., Giridhar, R., Chaturvedi, R. K.,
& Yadav, M. R. (2015).
ꢀ
Rodrıguez-Franco, M. I. (2014). New melatonin-N,N-dibenzyl(N-meth-
Neuroprotective role of novel triazine derivatives by activating Wnt/b
catenin signaling pathway in rodent models of Alzheimer’s Disease.
Molecular Neurobiology, 52(1), 638–652.
yl)amine hybrids: Potent neurogenic agents with antioxidant, cholin-
ergic, and neuroprotective properties as innovative drugs for
Alzheimer’s disease. Journal of Medicinal Chemistry, 57(9), 3773–3785.
Talesa, V. N. (2001). Acetylcholinesterase in Alzheimer’s disease.
Mechanisms of Ageing and Development, 122(16), 1961–1969. https://
ꢀ
Maccioni, R. B., Farıas, G., Morales, I., & Navarrete, L. (2010). The revital-
ized tau hypothesis on Alzheimer’s disease. Archives of Medical
Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and
SPC/E water models at 298 K. Journal of Physical Chemistry A, 43,
9954–9960.
McEneny-King, A., Osman, W., Edginton, A. N., & Rao, P. P. N. (2017).
Cytochrome P450 binding studies of novel tacrine derivatives:
Predicting the risk of hepatotoxicity. Bioorganic & Medicinal Chemistry
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K.,
Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. Journal of
Computational Chemistry, 30(16), 2785–2791.
Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. (2009). Oxidative stress
and neurodegenerative diseases: A review of upstream and down-
stream antioxidant therapeutic options. Current Neuropharmacology,
Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim,
J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & MacKerell Jr, A. D.
(2010). CHARMM general force field: A force field for drug-like mole-
cules compatible with the CHARMM all-atom additive biological force
fields. Journal of Computational Chemistry, 31, 671–690.
Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., &
Kopple, K. D. (2002). Molecular properties that influence the oral bio-
availability of drug candidates. Journal of Medicinal Chemistry, 45(12),
O’Brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing
and Alzheimer’s disease. Annual Review of Neuroscience, 34, 185–204.
Pachon-Angona, I., Refouvelet, B., Andrys, R., Martin, H., Luzet, V., Iriepa,
I., Moraleda, I., Diez-Iriepa, D., Oset-Gasque, M. J., Marco-Contelles, J.,
Musilek, K., & Ismaili, L. (2019). Donepezil þ chromone þ melatonin
hybrids as promising agents for Alzheimer’s disease therapy. Journal
of Enzyme Inhibition and Medicinal Chemistry, 34, 479–489.
Pajouhesh, H., & Lenz, G. R. (2005). Medicinal chemical properties of suc-
cessful central nervous system drugs. NeuroRx: The Journal of the
American Society for Experimental Neurotherapeutics, 2(4), 541–553.
Yanovsky, I., Finkin-Groner, E., Zaikin, A., Lerman, L., Shalom, H., Zeeli, S.,
Weill, T., Ginsburg, I., Nudelman, A., & Weinstock, M. (2012). Carbamate
derivatives of indolines as cholinesterase inhibitors and antioxidants for
the treatment of Alzheimer’s disease. Journal of Medicinal Chemistry,
Yu, W., He, X., Vanommeslaeghe, K., & MacKerell Jr, A. D. (2012).
Extension of the CHARMM general force field to sulfonyl-containing
compounds and its utility in biomolecular simulations. Journal of
Computational Chemistry, 33, 2451–2468.
Zhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of
Alzheimer’s disease. Oxidative Medicine and Cellular Longevity, 2013, 1–10.