(18 H, m, Har), 10.22 (1 H, s, CHO). 13C NMR (CDCl3)
δ (ppm): 17.7 (CH3), 38.7 (NCH3), 40.7 (ArCHAr), 55.8
(OCH3), 60.0 (NCH2), 64.0 (NCH), 70.0 (OCH2Ph), 70.9
(OCH2Ph), 111.4 (CHar), 113.4 (CHar), 114.8 (CHar), 126.7
(CHar), 127.3 (Car), 127.5 (CHar), 127.6 (CHar), 127.7 (CHar),
127.9 (CHar), 128.0 (CHar), 128.5 (CHar), 128.6 (CHar), 129.3
(CHar), 135.3 (Car), 136.6 (Car), 137.0 (Car), 142.1 (Car), 143.7
(Car), 146.6 (OCar), 154.1 (OCar), 157.3 (OCar), 190.0 (CHO).
removed under reduced pressure. The crude product was finally
purified by recrystallization from EtOH.
(4R)-4-(4-Hydroxyphenyl)-6-methoxy-2-methyl-1,2,3,4-tetra-
hydroisoquinolin-7-ol 1
White crystals (80 mg, 85%). Mp 213–214 ЊC (Found: C, 71.4;
H, 6.9; N, 5.0. C17H 19NO3 requires C, 71.6; H, 6.7; N 4.9%);
[α]2D2 = ϩ70.2 (c 0.2, MeOH). IR νmax (KBr)/cmϪ1 3331 (OH); 1H
NMR (CD3OD) δ (ppm): 2.40 (3 H, s, NCH3), 2.40 (1 H, m),
3.04 (1 H, m), 3.42 (1 H, d, J = 14.0), 3.58 (3 H, s, OCH3), 3.68
(1 H, d, J = 14.0), 4.12 (1 H, m, ArCHAr), 6.32 (1 H, s, Har),
6.56 (1 H, s, Har), 6.74 (2 H, m, Har), 7.01 (2 H, m, Har). 13C
NMR (CD3OD) δ (ppm): 45.5 (NCH3), 45.6 (ArCHAr), 56.3
(OCH3), 58.4 (NCH2), 63.0 (NCH2), 113.0 (CHar), 113.5 (CHar),
116.3 (CHar), 127.5 (Car), 129.4 (Car), 131.0 (CHar), 135.8 (Car),
146.3 (OCar), 148.2 (OCar), 157.3 (OCar).
(1S,1ЈR)-5-Benzyloxy-2-{1-(4-benzyloxyphenyl)-2-[methyl-
(1Ј-phenylethyl)amino]ethyl}-4-methoxybenzaldehyde 2
Second product separated by HPLC, t2 = 16.35 min. Oil
(Found: C, 80.2; H, 6.8; N, 2.6. C39H39NO4 requires C, 80.0; H,
6.7; N 2.4%); [α]2D2 = Ϫ25.4 (c 1.18, CHCl3). IR νmax (KBr)/cmϪ1
1
2857 (CHO), 1675 (C᎐O); H NMR (CDCl ) δ (ppm): 1.43
᎐
3
(3 H, d, J = 6.7, CH3), 2.24 (3 H, s, NCH3), 2.90–2.99 (2 H, m),
3.64 (1 H, q, J = 6.7), 3.77 (3 H, s, OCH3), 5.04 (2 H, s,
OCH2Ph), 5.10–5.17 (3 H, m, OCH2Ph ϩ CH), 6.65 (1 H, d,
Har), 6.92 (2 H, d, J = 8.7, Har), 7.08–7.52 (18 H, m, Har), 10.24
(1 H, s, CHO). 13C NMR (CDCl3) δ (ppm): 16.1 (CH3), 38.7
(NCH3), 41.1 (ArCHAr), 55.9 (OCH3), 59.4 (NCH2), 63.4
(NCH), 70.0 (OCH2Ph), 70.9 (OCH2Ph), 111.5 (CHar), 113.8
(CHar), 114.8 (CHar), 126.5 (CHar), 127.3 (Car), 127.4 (CHar),
127.5 (CHar), 127.6 (CHar), 127.8 (CHar), 128.1 (CHar), 128.6
(CHar), 128.7 (CHar), 128.8 (CHar), 129.4 (CHar), 135.4 (CHar),
136.6 (CHar), 137.0 (CHar), 141.8 (CHar), 143.5 (CHar), 146.7
(OCar), 154.1 (OCar), 157.1 (OCar), 190.0 (CHO).
(4S )-4-(4-Hydroxyphenyl)-6-methoxy-2-methyl-1,2,3,4-tetra-
hydroisoquinolin-7-ol 1
White crystals (127 mg, 90%). Mp 214–215 ЊC (lit.,16 217–
218 ЊC; lit.,25 210–213 ЊC); [α]2D2 = Ϫ70.3 (c 0.2, MeOH) {lit.,16
[α]2D1 = Ϫ70 (c 0.1, MeOH); lit.,25 [α]2D0 = Ϫ70.6 (c 0.24, MeOH)}.
Acknowledgements
This research was supported by the Centre National de la
Recherche Scientifique (CNRS). Also we wish to acknow-
ledge helpful discussions and advice from Dr T. G. C. Bird
(Astra-Zeneca).
General procedure for the synthesis of amino alcohols (R)-14 and
(S )-14
To a solution of diastereopure amine (1R,1ЈR)-2 (300 mg, 0.51
mmol) or (1S,1ЈR)-2 (400 mg, 0.68 mmol) in MeOH (10 mL)
was added activated Pd/C (10%, 5 mg). Hydrogen was intro-
duced and the reaction mixture was stirred for 24 h at room
temperature, filtered through Celite and the solvent removed
under reduced pressure. The crude product was purified by
recrystallization from methanol.
References
1 M. D. Rozwadowska, Heterocycles, 1994, 39, 903–931.
2 For the asymmetric synthesis of 1-substituted tetrahydro-
isoquinolines see, for example: (a) S. Murahashi, J. Sun and
T. Tsuda, Tetrahedron Lett., 1993, 34, 2645–2648; (b) W. Chan,
A. W. M. Lee and L. Jiang, Tetrahedron Lett., 1995, 36, 715–718;
(c) H. Suzuki, S. Aoyagi and C. Kibayashi, Tetrahedron Lett., 1995,
36, 6709–6712; (d ) M. J. Munchhof and A. I. Meyers, J. Org. Chem.,
1996, 61, 4607–4610; (e) R. Noyori and S. Hashiguchi, Acc. Chem.
Res., 1997, 30, 97–102; ( f ) Y. Ukaji, Y. Kenmoku and K. Inomata,
Tetrahedron: Asymmetry, 1996, 7, 53–56; (g) J. Kang, J. B. Kim,
K. H. Cho and B. T. Cho, Tetrahedron: Asymmetry, 1997, 8, 657–
660.
(4R)-5-Hydroxymethyl-4-[1-(4-hydroxyphenyl)-2-methylamino-
ethyl]-2-methoxyphenol 14
White crystals (130 mg, 84%). Mp 165–166 ЊC (Found: C, 67.3;
H, 6.9; N, 4.5. C17H21NO4 requires C, 67.3; H, 7.0; N 4.6%); [α]2D2
= ϩ43.6 (c 0.25, MeOH). IR νmax (KBr)/cmϪ1 3250 (br, OH,
3 See, for example: (a) S. F. Dyke, R. G. Kinsman, T. Kametani,
K. Fukumato and E. McDonald, Isoquinolines, in Heterocyclic
Compounds, ed. G. Grethe, Wiley, New York, 1981, vol. 38,
pp. 1–275; (b) A. I. Meyers, Tetrahedron, 1992, 48, 2589–2612.
4 (a) M. Kihara, M. Kashimoto, S. Kobayashi, Y. Ishida, H. Moritoki
and Z. Taira, J. Med. Chem., 1990, 33, 2283–2286; (b) A. E. Wright,
D. A. Forleo, G. P. Gunawardana, S. P. Gunasekera, F. E. Koehn
and O. J. McConnell, J. Org. Chem., 1990, 55, 4508–4512;
(c) K. L. Rinehart, T. G. Holt, N. L. Fregeau, J. G. Stroh,
P. A. Keifer, F. Sun, L. H. Li and D. G. Martin, J. Org. Chem., 1990,
55, 4512–4515; (d ) J. Kobayashi, K. Kondo, H. Shigemori,
M. Ishibashi, T. Sasaki and Y. Mikami, J. Org. Chem., 1992, 57,
6680–6682; (e) B. S. Davidson, Tetrahedron Lett., 1992, 33, 3721–
3724; ( f ) D. Mondeshka, B. Stensland, I. Angelova, C. B. Ivanov
and R. Atanasova, Acta Chem. Scand., 1994, 48, 689–698.
5 (a) N. Philippe, V. Levacher, G. Dupas, G. Queguiner and
J. Bourguignon, Org. Lett., 2000, 15, 2185–2187; (b) L. Prat,
R. Bureau, C. Daveu, V. Levacher, G. Dupas, G. Queguiner and
J. Bourguignon, J. Heterocycl. Chem., 2000, 37, 767–771.
6 (a) E. Zara-Kacziàn, L. György, G. Deak, A. Seregi and M. Dóda,
J. Med. Chem., 1986, 29, 1189–1195; (b) J. Ulin, A. D. Gee,
P. Malmborg, J. Tedroff and B. Längström, Appl. Radiat. Isot.,
1989, 40, 171–176.
7 (a) C. Cherpillod and L. M. Omer, J. Int. Med. Res., 1981, 9, 324–
329; (b) L. M. Omer, Int. J. Clin. Pharmacol. Ther. Toxicol., 1982, 20,
320–326.
8 (a) A. Brossi, G. Grethe, S. Teitel, W. C. Wildman and D. T. Bailey,
J. Org. Chem., 1970, 35, 1100–1104; (b) C. Fuganti, The Alkaloids,
ed. R. H. F. Manske, Academic Press, New York, 1975, vol XV,
pp. 83–164; (c) M. Shamma and J. L. Moniot, Isoquinoline Alkaloids
Research 1972–1977, Plenum Press, New York, 1978.
1
NH); H NMR (DMSO) δ (ppm): 2.24 (3 H, s, NCH3), 2.38
(1 H, dd, J = 11.2, 7.3), 2.75 (1 H, dd, J = 11.2, 5.3), 3.39 (2 H,
m, CH2OH), 3.51 (3 H, s, OCH3), 3.92–3.96 (1 H, m, ArCHAr),
6.24 (1 H, s, Har), 6.48 (1 H, s, Har), 6.65 (2 H, d, J = 8.5, Har),
6.95 (2 H, d, J = 8.5, Har). 13C NMR (DMSO) δ (ppm): 43.7
(NCH3), 45.6 (ArCHAr), 55.5 (OCH3), 57.3 (OCH2), 61.6
(NCH2), 112.5 (CHar), 112.6 (CHar), 114.8 (CHar), 127.5 (Car),
127.7 (Car), 129.5 (CHar), 135.6 (Car), 144.8 (OCar), 146.1
(OCar), 155.6 (OCar).
(4S )-5-Hydroxymethyl-4-[1-(4-hydroxyphenyl)-2-methylamino-
ethyl]-2-methoxyphenol 14
White crystals (166 mg, 80%). Mp 164–165 ЊC (Found: C, 67.4;
H, 7.1; N, 4.5. C17H21NO4 requires C, 67.3; H, 7.0; N 4.6%);
[α]2D0 = Ϫ43.1 (c 0.22, MeOH).
General procedure for the synthesis of the target (R)-cherylline
and (S )-cherylline 1
To a solution of amino alcohol (4R)-14 (100 mg, 0.33 mmol) or
(4S)-14 (150 mg, 0.49 mmol) in a mixture of MeOH–toluene
(1 : 9, 10 mL) was added p-TsOH (10 mg). The reaction mixture
was refluxed over a period of 9 h and the water formed removed
by azeotropic distillation using a Dean–Stark apparatus. The
end of the reaction was controlled by TLC and the solvent was
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 1 7 0 1 – 1 7 0 6
1705