Table 2 Reaction of 1,2-propadienyl organoselenides with nitriles and I2
H2O
(equiv) (h)
Time
Yield of 3 Z/E ratio
(%)
Entry
R
RA
of 3a
1
2
3
4
5
6
7
8
9
C6H5
C6H5
Me
n-Pr
Me
Me
Me
Me
Me
1
1
1
0
1
1
1
1
0
10.5
10
14.5
21
11.5
12
10
9.5
11.5
59 (3a)
46 (3b)
62 (3c)
45 (3c)
60 (3d)
51 (3e)
54 (3f)
51 (3g)
23 (3g)
418+1
421+1
422+1
421+1
443+1
465+1
426+1
419+1
430+1
p-CH3C6H4
p-CH3C6H4
o-CH3C6H4
p-BrC6H4
p-ClC6H4
p-CH3OC6H4 Me
p-CH3OC6H4 Me
Scheme 3
a Determined by 300 MHz 1H NMR spectra of the crude product.
Natural Science Foundation of China, Cheung Kong Scholars
Programme and Zhejiang University.
for the substrates studied, the yields are moderate; (2) The yield
in the absence of water is lower.
Z-3a is a useful synthetic intermediate. Its reduction of the
carbonyl group in 3a with DIBAL in toluene afforded N-(3A-
phenylseleno-2-iodo-(2E)-propenyl) N-ethyl amine (Z-8a) in
79% yield, while upon its treatment with NaH, the reaction
afforded 2-methyl-5-(phenylselenomethyl)oxazole (9a) in 96%
yield (Scheme 2).7
Notes and References
1 (a) The Chemistry of the Allenes, ed. S. R. Landor, Academic Press, New
York, 1982; Vols. 1–3; (b) The Chemistry of Ketenes, Allenes and
Related Compounds, ed. S. Patai, Wiley: New York, 1980; Vols. 1 and
2; (c) L. Brandsma and H. D. Verkruijsee, Synthesis of Acetylenes,
Allenes and Cumulenes, Elsevier, New York, 1980; (d) C. Bruneau and
P. H. Dixneuf, Compr. Org. Funct. Group Transform, 1995, 1, 953; (e)
J. A. Marshall, Chem. Rev, 1996, 96, 31; (f) H. F. Schuster and G. M.
Coppola, Allene in Organic Synthesis, Wiley, New York, 1984; (g) D. R.
Taylor, Chem. Rev., 1967, 67, 317; (h) M. Aso and K. Kanematsu, Trends
Org. Chem., 1995, 5, 157; (i) R. Zimmer, Synthesis, 1993, 2, 165.
2 For recent reviews, see: (a) R. Zimmer, C. U. Dinesh, E. NanDanan and
F. Khan, Chem. Rev., 2000, 100, 3067; (b) A. S. K. Hashmi, Angew.
Chem. Int. Ed., 2000, 39, 3590; (c) X. Lu, C. Zhang and Z. Xu, Acc.
Chem. Res., 2001, 34, 535.
3 For some of our recent work, see: (a) S. Ma and S. Zhao, J. Am. Chem.
Soc., 2001, 123, 5578; (b) S. Ma and S. Wu, Chem. Commun., 2001, 441;
(c) S. Ma and S. Wu, Tetrahedron Lett., 2001, 42, 4075; (d) S. Ma, Z. Shi
and Z. S. Wu, Tetrahedron:Asymmetry, 2001, 12, 193; (e) S. Ma and Z.
Shi, Chem. Commun., 2002, 540; (f) S. Ma, N. Jiao, S. Zhao and H. Hou,
J. Org. Chem., 2002, 67, 2837; (g) S. Ma, D. Duan and Y. Wang, J.
Comb. Chem., 2002, 4, 239; (h) S. Ma and Z. Yu, Angew. Chem. Int. Ed.,
2002, 41, 1775.4.
4 (a) S. Ma, Z. Shi and L. Li, J. Org. Chem., 1998, 63, 4522; (b) S. Ma and
Q. Wei, J. Org. Chem., 1999, 64, 1026; (c) S. Ma, L. Li and H. Xie, J.
Org. Chem., 1999, 64, 5325; (d) S. Ma and Q. Wei, Eur. J. Org. Chem.,
2000, 10, 1939; (e) S. Ma and L. Li, Synlett, 2001, 8, 1206; (f) S. Ma, L.
Li, Q. Wei, X. Xie, G. Wang, Z. Shi and J. Zhang, Pure. Appl. Chem.,
2000, 72, 1739; (g) S. Ma, H. Xie, G. Wang, J. Zhang and Z. Shi,
Synthesis, 2001, 5, 713; (h) S. Ma, S. Yin, L. Li and F. Tao, Org. Lett.,
2002, 4, 505.
Scheme 2
It can be assumed that the lone electron pair of selenium atom
would interact with I2 to form a molecular complex.8 Intra-
molecular electrophilic addition of I2 with the CNC bond remote
from the Se group would form intermediate Z-4a. The strong
soft Lewis acid and base interaction between the positively
charged iodine atom and Se9 may be responsible for the
stereoselectivity of this reaction. Upon hydrolysis, the reaction
affords Z-2a. Its reaction with MeCN leads to intermediate Z-
5a, which would produce Z-3a after hydrolysis (Scheme 3).
In conclusion, we have developed a highly regio- and
stereoselective four-component iodoamination reaction of
1,2-allenyl selenides with I2, H2O, and nitriles. The Z-
stereoselectivity for this reaction may be controlled by the soft
Lewis base and acid interaction between the selenium atom and
the positively charged iodine atom.8 The regioselectivity in this
reaction may be controlled by the steric and electronic effects of
the Se-containing groups. Although the precise origin of the
stereoselectivity observed during this transformation requires
more investigation this reaction may open up new area for the
control of selectivity in addition reactions of allenes. The scope
of this reaction, the real nature of the Z-stereoselectivity, and the
synthetic application of these reactions are currently being
carried out in our laboratory.
5 S. Ma, Q. Wei and H. Wang, Org. Lett., 2000, 2, 3893.
6 Crystal Data for Z-3a: C11H12INOSe, Mw = 380.08, monoclinic, Space
group P2(1)/c, Mo-Ka, final R indices [I > 2 s(I)] R1 = 0.0355, wR2
=
0.0696, a = 10.9005(10), b = 13.2791(12), c = 9.8573(9), Å, b (2)°, V
= 1300.8(2), Å3, T = 20.0 °C, Z = 4, Reflections collected/Total
7761/Unique 3019 (Rint = 0.0719), No Observation (I > 2.00s(I)) 1845,
b300879g/ for crystallographic data in .cif or other electronic format.
7 (a) K. M. Short and C. B. Ziegler, Jr, Tetrahedron Lett., 1993, 34, 71; (b)
C. Giuseppe, C. Corrado and G. Mario, J. Chem. Soc. Perkin. Trans. I,
1984, 255.
8 W. Nakanishi, Y. Yamamoto, Y. Kusuyama, Y. Ikeda and H. Iwamura,
Chem. Lett., 1983, 675; S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard
and S. Sarwar, J. Chem. Soc., Dalton Trans., 1997, 1031.
9 T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic
Chemistry, 3rd Edn., Harper & Row, Publishers, Inc., New York, 1987, p.
319.
Financial support from the Major State Basic Research
Development Program (Grant No. G2000077500), National
CHEM. COMMUN., 2003, 1082–1083
1083