Communications
Nicolaou, A. J. Roecker, M. Follmann, R. Baati, Angew. Chem.
2002, 114, 2211 – 2214; Angew. Chem. Int. Ed. 2002, 41, 2107 –
2110.
Table 1: Selected data for 3 and 2a.
3: Colorless oil; [a]D =À148 (c=0.10 in CHCl3); Rf =0.27 (silica, 25%
EtOAc in hexanes); IR (thin film): n˜max =2930, 2861, 1766, 1742, 1508,
[3] K. C. Nicolaou, M. Follmann, A. J. Roecker, K. W. Hunt, Angew.
Chem. 2002, 114, 2207 – 2210; Angew. Chem. Int. Ed. 2002, 41,
2103 – 2106.
[4] R. Hanselmann, M. Benn, Synth. Commun. 1996, 26, 945 – 961.
[5] T. Nagamitsu, T. Sunazuka, R. Obata, H. Tomoda, H. Tanaka, Y.
Harigaya, S. Omura, A. B. Smith III, J. Org. Chem. 1995, 60,
8126 – 8127.
[6] G. Sourkouni-Argirusi, A. Kirschning, Org. Lett. 2000, 2, 3781 –
3784.
[7] A. F. Barrero, S. Arseniyadis, J. F. Quilez del Moral, M. Mar
Herrador, M. Valdivia, D. Jimenez, J. Org. Chem. 2002, 67,
3781 – 3784.
1
1461, 1249 cmÀ1; HNMR (600 MHz, C 6D6): d=3.71 (d, J=9.7 Hz,
1H), 3.69–3.67 (m, 1H), 3.58–3.50 (m, 1H), 3.37 (d, J=9.7 Hz, 1H),
3.13 (s, 3H), 2.83 (d, J=4.4 Hz, 1H), 2.56 (s, 1H), 2.40 (br s, 1H), 2.32
(br s, 1H), 2.16 (dd, J=17.9, 4.8 Hz, 1H), 1.88–1.80 (m, 1H), 1.61–1.42
(m, 5H), 1.39–1.22 (m, 3H), 1.14 (s, 3H), 1.03 (d, J=10.5 Hz, 1H), 0.96
(s, 9H), 0.95–0.88 (m, 1H), 0.82–0.74 (m, 1H), À0.02 ppm (s, 6H);
13C NMR (150 MHz, C6D6): d=215.1, 171.3, 115.1, 85.2, 71.1, 68.4, 67.7,
54.8, 54.1, 51.0, 42.5, 41.3, 41.1, 39.9, 38.8, 38.1, 35.6, 32.2, 30.4, 28.2,
26.0, 18.1, 16.5, À4.5, À4.6 ppm; HRMS (MALDI, FTMS), calcd for
C27H42O6Si [M+Na+]: 513.2643, found: 513.2631
2a: Colorless oil; [a]D =À348 (c=0.23 in CHCl3); Rf =0.52 (silica, 50%
EtOAc in hexanes); IR (thin film): n˜max =2958, 2868, 1765, 1730, 1454,
1371, 1243 cmÀ1; 1HNMR (600 MHz, C 6D6): d=4.43–4.38 (m, 1H), 3.66
(d, J=9.6 Hz, 1H), 3.48 (dd, J=9.6, 2.2 Hz, 1H), 2.92 (s, 1H), 2.74 (d,
J=4.0 Hz, 1H), 2.62–2.58 (m, 1H), 2.52 (d, J=4.0 Hz, 1H), 2.21–2.15
(m, 1H), 1.94–1.91 (m, 1H), 1.74–1.70 (m, 1H), 1.67 (s, 3H), 1.65 (d,
J=3.5 Hz, 1H), 1.63 (d, J=3.5 Hz, 1H), 1.56–1.53 (m, 1H), 1.38–1.18
(m, 5H), 1.07–1.03 (m, 1H), 1.02–0.98 (m, 1H), 0.96 (s, 3H), 0.77 (d,
J=7.0 Hz, 3H), 0.58–0.52 ppm (m, 1H); 13C NMR (125 MHz, C6D6):
d=215.5, 207.1, 175.5, 169.0, 70.6, 68.6, 60.2, 58.5, 53.4, 50.4, 46.0, 43.3,
40.2, 38.6, 35.4, 34.7, 34.1, 34.0, 30.2, 27.2, 22.2, 20.7, 20.4 ppm; HRMS
(MALDI, FTMS), calcd for C23H30O6 [M+H+]: 403.2115, found: 403.2118
[8] G. Eichberger, G. Penn, K. Raber, H. Griengl, Tetrahedron Lett.
1986, 27, 2843 – 2844.
[9] P. G. Gassman, S. J. Burns, K. B. Pfister, J. Org. Chem. 1993, 58,
1449 – 1457.
[10] For a bromoketalization precedent, see: J. D. White, P. Ther-
amongkol, C. Kuroda, J. R. Engegrecht, J. Org. Chem. 1988, 53,
5909 – 5921.
[11] For another substrate-directed 6-endo-trig over 5-exo-trig rad-
ical cyclization, see: C. Anies, L. Billot, J.-Y. Lallemand, A.
Pancrazi, Tetrahedron Lett. 1995, 36, 7247 – 7250.
[12] For an example of a 1,5 hydrogen-transfer reaction, see: D. P.
Curran, H. Yu, Synthesis 1992, 123 – 127.
[13] For further mechanistic characterization, the cyclization of the
minor bromoketal was also performed with nBu3SnD. The
product showed incorporation of deuterium by MALDI MS and
by 1H NMR (presumably the deuterium was incorporated at C8;
the signal for the proton at C8 is obscured by other protons in the
same region).
useful in other contexts within the general theme of molecular
complexity and diversity construction.
[14] For another example of an intramolecular redox reaction
through a 1,5 hydride shift, see: H. Berner, G. Schultz, H.
Schneider, Tetrahedron 1980, 36, 1807 – 1811.
[15] P. H. J. Carlsen, T. Katsuki, V. S. Martin, K. B. Sharpless, J. Org.
Chem. 1981, 46, 3936 – 3938.
Received: April 24, 2003 [Z51744]
Keywords: asymmetric synthesis · azadirachtin ·
.
domino reactions · hydride shift · natural products · radicals
[1] For the isolation, see: J. H. Butterworth, E. D. Morgan, Chem.
Commun. 1968, 23 – 24.
[2] For the structure determination, see: a) J. N. Bilton, H. B.
Broughton, P. S. Jones, S. V. Ley, Z. Lidert, E. D. Morgan, H. S.
Rszepa, R. N. Sheppard, A. M. Z. Slawin, D. J. Williams, Tetra-
hedron 1987, 43, 2805 – 2815; b) W. Kraus, M. Bokel, A. Bruhn,
R. Cramer, I. Klaiber, A. Klenk, G. Nagl, H. Pohnl, H. Sadlo, B.
Vogler, Tetrahedron 1987, 43, 2817 – 2830; c) C. J. Turner, M. S.
Tempesta, R. B. Taylor, M. G. Zagorski, J. S. Termini, D. R.
Schroeder, K. Nakanishi, Tetrahedron 1987, 43, 2789 – 2804;
Synthetic studies: d) S. V. Ley, C. E. Gutteridge, A. R. Pape,
C. D. Spilling, C. Zumbrunn, Synlett 1999, 1295 – 1297; e) A. A.
Denholm, L. Jennens, S. V. Ley, Tetrahedron 1995, 51, 6591 –
6604; f) S. V. Ley, A. A. Denholm, A. Wood, Nat. Prod. Rep.
1993, 10, 109 – 157; g) H. Kolb, S. V. Ley, Tetrahedron Lett. 1991,
32, 6187 – 6190; h) M. G. Brasca, H. B. Broughton, D. Craig, S. V.
Ley, A. A. Somovilla, P. L. Toogood, Tetrahedron Lett. 1988, 29,
1853 – 1856; i) Y. Yamamoto, J. Ishihara, N. Kanoh, A. Murai,
Synthesis 2000, 1878 – 1893; j) H. Watanabe, T. Watanabe, K.
Mori, T. Kitahara, Tetrahedron Lett. 1997, 38, 4429 – 4432; k) Y.
Nishikimi, T. Iimori, M. Sodeoka, M. Shibasaki, J. Org. Chem.
1989, 54, 3354 – 3359; l) K. J. Henry, Jr., B. Fraser-Reid, J. Org.
Chem. 1994, 59, 5128 – 5129; m) H. Schlesiger, E. Winterfeld,
Chirality 1997, 9, 454 – 458; n) T. Durand-Reville, L. B. Gobbi,
B. L. Gray, S. V. Ley, J. S. Scott, Org. Lett. 2002, 4, 3847 – 3850;
o) T. Fukuzaki, S. Kobayashi, T. Hibi, T. Ikuma, J. Ishihara, N.
Kanoh, A. Murai, Org. Lett. 2002, 4, 2877 – 2880; p) K. C.
3642
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 3637 –3642