M. Harmata et al. / Tetrahedron Letters 44 (2003) 7261–7264
7263
Scheme 5.
nol.16 To further verify the stereochemistry of 23, it was
converted to the corresponding methyl ether 24, also a
known compound.17
3. For asymmetric syntheses of curcumene and curcuphe-
nol, see: (a) Hagiwara, H.; Okabe, T.; Ono, H.; Kamat,
V. P.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc.,
Perkin Trans. 1 2002, 7, 895; (b) Ono, M.; Ogura, Y.;
Hatogai, K.; Akita, H. Chem. Pharm. Bull. 2001, 49,
1581; (c) Kimachi, T.; Takemoto, Y. J. Org. Chem. 2001,
66, 2700; (d) Fuganti, C.; Serra, S. J. Chem. Soc., Perkin
Trans. 1 2000, 3758; (e) Fuganti, C.; Serra, S.; Dulio, A.
J. Chem. Soc., Perkin Trans. 1 1999, 279; (f) Tanaka, K.;
Nuruzzaman, M.; Yoshida, M.; Asakawa, N.; Yang, X.;
Tsubaki, K.; Fuji, K. Chem. Pharm. Bull. 1999, 47, 1053;
(g) Schmalz, H.; Koning, C. B.; Bernicke, D.; Siegel, S.;
Pfletschinger, A. Angew. Chem., Int. Ed. 1999, 38, 1620;
(h) Sugahara, T.; Ogasawara, K. Tetrahedron: Asymmetry
1998, 9, 2215–2217; (i) Fuganti, C.; Serra, S. Synlett 1998,
1252; (j) Meyers, A. I.; Stoianova, D. J. Org. Chem. 1997,
62, 5219; (k) Chavan, S. P.; Dhondge, V. J.; Patil, S. S.;
Rao, Y. T. S. Tetrahedron: Asymmetry 1997, 8, 2517; (l)
Ono, M.; Ogura, Y.; Hatogai, K.; Akita, H. Tetrahedron:
Asymmetry 1995, 6, 1829–1832; (m) Davisson, V. J.;
Poulter, C. D. J. Am. Chem. Soc. 1993, 115, 1245; (n)
Takano, S.; Yanase, M.; Sugihara, T.; Ogasawara, K. J.
Chem. Soc. Commun. 1988, 1538; (o) Asaoka, M.; Shima,
K.; Fuji, N.; Takei, H. Tetrahedron 1988, 4757–4766; (p)
Asaoka, M.; Shima, K.; Takei, H. Tetrahedron Lett.
1987, 5669; (q) Honda, Y.; Sasaki, M.; Tsuchihashi, G.
Chem. Lett. 1985, 1153; (r) Ghisalberti, E. L.; Jefferies, P.
R.; Stuart, A. D. Aust. J. Chem. 1979, 32, 1627.
Finally, several attempts were made to convert 14 to 23.
In the best case, diazotization of 14 followed by treat-
ment of the resulting diazonium ion with copper
nitrate/copper oxide according to a procedure intro-
duced by Boger and co-workers afforded 23 in 37%
yield (Eq. (1)).18
(1)
In summary, we have completed formal syntheses of
(+)-curcumene and (+)-curcuphenol. These applications
help to verify stereochemical assignments in the forma-
tion of benzothiazines via intramolecular Michael addi-
tions, which have heretofore been based largely on
analogy. Further, this work demonstrates that sulfox-
imines can serve as ammonia equivalents in the Buch-
wald–Hartwig reaction. The work also lays the
foundation for more complex applications. Details of
these studies will be the focus of future reports.
4. (a) Simonsen, S. J. The Terpenes; Cambridge University
Press, 1952; Vol. III, pp. 18, 202; (b) Honwad, V. K.;
Rao, A. S. Tetrahedron 1965, 21, 2593.
Acknowledgements
5. (a) Fusetani, N.; Sugano, M.; Matsunaga, S.; Hashimoto,
K. Experientia 1987, 43, 1234; (b) Wright, A. E.;
Pomponi, S. A.; McConnell, O. J.; Kohmoto, S.;
McCarthy, P. J. J. Nat. Prod. 1987, 50, 976.
This work was supported by the Petroleum Research
Fund, administered by the American Chemical Society,
to whom we are grateful.
6. McEnroe, F. J.; Fenical, W. Tetrahedron 1978, 34, 1661.
7. Bohlmann, F.; Lonitz, M. Chem. Ber. 1978, 111, 843.
8. Jolad, S. D.; Rajagopal, S. Org. Synth. 1966, 46, 13.
9. Crystallographic data (excluding structure factors) for the
structures in this paper (11 and 12), have been deposited
with the Cambridge Crystallographic Data Centre as
supplementary publication numbers CCDC 215011 and
215012. Copies of the data can be obtained, free of
charge, on application to CCDC, 12 Union Road, Cam-
References
1. Harmata, M.; Hong, X. J. Am. Chem. Soc. 2003, 125,
5754.
2. (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998,
37, 5731; (b) Bolm, C.; Hildebrand, J. P. J. Org. Chem.
2000, 65, 169.