1024
P. C. B. Page et al.
LETTER
(2) (a) Dourish, C. T.; Hill, D. R. Trends Pharmacol. Sci. 1987,
8, 207. (b) Moran, T.; Robinson, P.; Goldrich, M. S.;
McHuge, P. Brain Res. 1986, 362, 175.
(3) Dourish, C. T.; Rycroft, W.; Iversen, S. D. Science 1989,
245, 1509.
Formation of the spirotetronic acid requires acylation of
the newly-introduced hydroxy group. We envisaged that
acylation of this hydroxy group as a malonyl ester and
subsequent deprotonation of the malonyl moiety might
lead to intramolecular Dieckmann cyclization13 by nu-
cleophilic attack at the lactone carbonyl group, so gener-
ating the spirotetronic acid unit of 1/2, complete with a
pendant ester group for attachment to the macrocycle
(Scheme 6). Hydroxylactone 12 was thus treated with ex-
cess (2.5 equiv) ethyl malonyl chloride in the presence of
2,6-di-t-butyl-6-methylpyridine (2.5 equiv), in dichlo-
romethane as solvent. The acylated product 13 was ob-
tained after a five-hour reaction time in excellent yield
(98%).
(4) Dourish, C. T.; O’Neil, M. F.; Coughlan, J.; Kitchener, S. J.;
Hawley, D.; Iversen, S. D. Eur. J. Pharmacol. 1990, 176, 35.
(5) (a) Ravard, S.; Dourish, C. T. Trends Pharmacol. Sci. 1990,
11, 271. (b) Hughes, J.; Boden, P.; Costall, B.; Domeney,
A.; Kelly, E.; Horwell, D. C.; Hunter, J. C.; Pinnock, R. D.;
Woodruff, G. N. Proc. Natl. Acad. Sci. U.S.A. 1990, 87,
6728.
(6) (a) Kuwahara, T.; Kudoh, T.; Nagase, H.; Takamiya, M.;
Nakano, A.; Ohtsuka, T.; Yoshizaki, H.; Arisawa, M. Eur. J.
Pharmacol. 1992, 221, 99. (b) Ohtsuka, T.; Kudoh, T.;
Shimma, N.; Kotaki, H.; Nakayama, N.; Itezono, Y.;
Fujisaki, N.; Watanabe, J.; Yokose, K.; Seto, H. J. Antibiot.
1992, 45, 140. (c) Watanabe, J.; Fujisaki, N.; Fujimori, K.;
Anzai, Y.; Oshima, S.; Sano, T.; Ohtsuka, T.; Watanabe, K.;
Okuda, T. J. Antibiot. 1993, 46, 1. (d) Ohtsuka, T.; Kotaki,
H.; Nakayama, N.; Itezono, Y.; Shimma, N.; Kudoh, T.;
Kuwahara, T.; Arisawa, M.; Yokose, K. J. Antibiot. 1993,
46, 11. (e) Ohtsuka, T.; Nakayama, N.; Itezono, Y.;
Shimma, N.; Kuwahara, T.; Yokose, K.; Seto, H. J. Antibiot.
1993, 46, 18. (f) Kuwahara, T.; Kudoh, T.; Nakano, A.;
Yoshizaki, H.; Takamiya, M.; Nagase, H.; Arisawa, M.
Neurosci. Lett. 1993, 158, 1. (g) Murayama, T.; Matsumori,
Y.; Iwata, N.; Ito, M.; Taniguchi, T.; Chihara, K.; Matsui, T.
Jap. J. Cancer Res. 1996, 87, 743.
Ethyl malonyl
chloride (2.5 equiv)
H
H
O
O
2,6-di-t-butyl-4-methyl
pyridine (2.5 equiv)
CH2Cl2 , 5 h
OH
O
O
O
O
O
O
12
13
98%
KHMDS (2.0 equiv)
–78 °C then r.t.
overnight
91%
(7) The stereochemical assignment for diene 4 was based on the
coupling constant between H-3 and H-4 (J = 18 Hz),
consistent with the E isomer.
(8) Triene 9 was prepared in 82% yield by reaction of alcohol 4
with diphenylvinylsilyl chloride in dichloromethane at r.t. in
the presence of triethylamine.
(9) The stereochemical assignment for lactol 10 was based on
NOE data and on the coupling constant between the
hydrogen atoms at the ring junction positions (J = 4.5 Hz),
consistent with the cis isomer.
HO
HO
O
O
O
O
2
Scheme 6
(10) Davis, F. A.; Chen, B.-C. Chem. Rev. 1992, 92, 919.
(11) (a) Davis, F. A.; Mancinelli, P. A.; Balasubramanian, K.;
Nadir, U. J. Am. Chem. Soc. 1979, 101, 1044. (b) Davis, F.
A.; Stringer, O. D. J. Org. Chem. 1982, 47, 1744. (c)Davis,
F. A.; Vishwakarma, L. C.; Billmers, J. M.; Finn, J. J. Org.
Chem. 1984, 49, 3241. (d) Davis, F. A.; Lamendale, J.;
Nadir, U.; Kluger, E. W.; Sedergran, T. C.; Panunto, T. W.;
Billmers, R.; Jenkins, R.; Turchi, I. J.; Watson, W. H.; Chen,
J. S.; Kimura, M. J. Am. Chem. Soc. 1980, 102, 2000.
(e) Glinski, M. B.; Freed, J. C.; Durst, T. J. Org. Chem.
1987, 52, 2749.
(12) Belletire, J. L.; Fry, D. K. J. Org. Chem. 1988, 53, 4724.
(13) (a) Ireland, R. E.; Thompson, W. J. J. Org. Chem. 1979, 44,
3041. (b) Roush, W. R.; Sciotti, R. J. J. Org. Chem. 1998,
63, 5473. (c) Roush, W. R.; Reilly, M. L.; Koyama, K.;
Brown, B. B. J. Org. Chem. 1997, 62, 8708.
Treatment of malonate derivative 13 with lithium bis(tri-
methylsilyl)amide (2.0 equiv) overnight at room tempera-
ture did not induce product formation. Ishihara has
reported that potassium bis(trimethylsilyl)amide is a
much more effective reagent for Dieckmann cyclization
than are the corresponding lithium or sodium deriva-
tives.14 We were gratified to find that the desired Dieck-
mann cyclization to give 2 proceeded smoothly in 91%
yield upon exposure of 13 to potassium bis(trimethyl-
silyl)amide at –78 °C, allowing the mixture to reach room
temperature, and stirring overnight.15 The driving force is
presumably the formation of the highly conjugated five-
membered ring in place of the six-membered ring lac-
tone.
(14) Ishihara, J.; Nonaka, R.; Terasawa, Y.; Tadano, K.; Ogawa,
S. Tetrahedron: Asymmetry 1994, 5, 2217.
(15) Analytical data: IR(neat): nmax = 3378, 2923, 1782, 1613
cm–1. 1H NMR (400 MHz, CDCl3): d = 0.74–0.84 (1 H, m),
1.1 (3 H, d, J = 5.2 Hz), 1.19 (1 H, s), 1.31 (3 H, t, J = 8.0
Hz), 1.41–1.49 (1 H, m), 1.60 (3 H, s), 1.76–1.79 (2 H, m),
1.97–2.03 (1 H, m), 2.33–2.40 (2 H, m), 3.59–3.71 (2 H, m),
4.3 (2 H, q, J = 8.0 Hz), 5.3 (1 H, s). 13C NMR (100.6 MHz,
CDCl3): d = 194, 167, 166, 138, 121, 95, 85, 62, 60, 41, 36,
35, 31, 23, 19, 15. MS (EI): m/z (%) = 310 (100) [M+] , 199,
134, 120, 91, 60. Found: 310.14124; C16H22O6 requires
310.14164.
Acknowledgment
This investigation has enjoyed the support of Loughborough
University, Glaxo SmithKline, and the Leverhulme Trust.
References
(1) Kuwahara, T.; Kudoh, T.; Nagase, H.; Takamiya, M.;
Nakano, A.; Ohtsuka, T.; Yoshizaki, H.; Arisawa, M. Eur. J.
Pharmacol. 1992, 221, 99.
Synlett 2003, No. 7, 1022–1024 ISSN 1234-567-89 © Thieme Stuttgart · New York