Crystal Growth & Design
Article
that they pack in a bilayer format. This suggests that NAGs
would most likely stabilize the membrane structure when
incorporated into phospholipid bilayers. The crystal structures
of NMG and NPG show that the acyl chains in these molecules
are oriented essentially perpendicular to the bilayer plane,
which would be the least disturbing way to accommodate them
into the host matrix. The hydrogen bonding capability of the
amide moiety at the hydrophobic−hydrophilic interface of the
NAG molecule could provide potential interaction with other
membrane consitituents such as phospholipids, glycolipids,
cholesterol, and integral proteins. The carboxyl group of the
glycine moiety can potentially exhibit electrostatic interactions
with peripheral proteins. Such interactions could be relevant to
the biological roles of NAGs, for example, antinociceptive
activity.
ACKNOWLEDGMENTS
■
This work was supported by a research grant from the
Department of Science and Technology (India) to M.J.S. S.T.R.
is a Senior Research Fellow of the Council of Scientific and
Industrial Research (India). K.P.K. was supported by a D. S.
Kothari postdoctoral fellowship from the University Grants
Commission (India). Use of the National Single Crystal
Diffractometer Facility at the School of Chemistry, University
of Hyderabad, funded by the DST (India), is gratefully
acknowledged. The UGC (India) is acknowledged for their
support through the UPE and CAS programs to the University
of Hyderabad and School of Chemistry, respectively.
REFERENCES
■
(1) Cartwright, N. J. Biochem. J. 1955, 60, 238−242.
(2) Schmid, H. H. O.; Schmid, P. C.; Natarajan, V. Prog. Lipid Res.
1990, 29, 1−43.
(3) Huang, S. M.; Bisogno, T.; Trevisani, M.; Al-Hayani, A.; de
Petrocellis, L.; Fezza, F.; et al. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
8400−8405.
(4) Cravatt, B. F.; Prospero-Garcia, O.; Siuzdak, G.; Gilula, N. B.;
Henriksen, S. J.; Boger, D. L.; Lerner, R. A. Science 1995, 268, 1506−
1509.
(5) Connor, M.; Vaughn, C. W.; Vandenberg, R. J. Br. J. Pharmacol.
2010, 160, 1857−1871.
(6) Devane, W. A.; Hanus, L.; Breuer, A.; Pertwee, R. G.; Stevenson,
L. A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.;
Mechoulam, R. Science 1992, 258, 1946−1949.
(7) Scheul, H.; Goldstein, E.; Mechoulam, R.; Zimmerman, A. M.;
Zimmerman, S. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 7678−7682.
(8) Venance, L.; Piomelli, D.; Glowinski, J.; Giaume, C. Nature 1995,
376, 590−594.
(9) Sheskin, T.; Hanus, L.; Slager, J.; Vogel, Z.; Mechoulam, R. J.
Med. Chem. 1997, 40, 659−667.
(10) Huang, S. M.; Bisogno, T.; Petros, T. J.; Chang, S. Y.;
Zavitsanos, P. A.; Zipkin, R. E.; Sivakumar, R.; Coop, A.; Maeda, D. Y.;
Petrocellis, L. D.; et al. J. Biol. Chem. 2001, 276, 42639−42644.
(11) Bradshaw, H. B.; Walker, J. M. Br. J. Pharmacol. 2005, 144, 459−
465.
(12) Hohmann, A. G.; Suplita, R. L.; Bolton, N. M.; Neely, M. H.;
Fegley, D.; Mangieri, R.; Krey, J. F.; Walker, J. M.; Holmes, P. V.;
Crystal, J. D.; et al. Nature 2005, 435, 1108−1112.
(13) Succar, R.; Mitchell, V. A.; Vaughan, C. W. Mol. Pain 2007, 3,
24.
SUMMARY AND CONCLUSIONS
■
In the present study, we have synthesized a homologous series
of N-acylglycines, which are naturally occurring amphiphiles
present in the neural tissues of mammals, and characterized
their thermotropic phase behavior and structure by differential
scanning calorimetry and X-ray diffraction. Most NAGs showed
a minor transition before the chain-melting transition,
indicating the possibility of polymorphism. Analysis of the
DSC results indicated that the thermodynamic parameters, ΔHt
and ΔSt, exhibit a linear dependence on the chain length both
in the dry state and upon hydration, lacking the characteristic
odd−even alternation observed with a number of other single-
chain amphiphiles, which could be explained on the basis of the
crystal structures of N-myristoylglycine and N-palmitoylglycine,
wherein the NAGs adopt an extended geometry, with the
molecules packed in a bilayer fashion in the crystal lattice with
the acyl chains oriented essentially perpendicular to the bilayer
plane. Powder X-ray diffraction data suggest that in the solid
state all the NAGs in the homologous series investigated (n =
8−20) adopt a very similar packing arrangement. These studies
provide a thermodynamic and structural basis for under-
standing the functional roles of N-acylglycines in the parent
tissues where they occur. Especially, the present results will be
relevant to understand their interaction with other constituents
of biomembranes such as integral membrane proteins, as well as
major membrane lipids, such as phospholipids and cholesterol.
Future studies from our laboratory will focus on these aspects.
(14) Vuong, L. A.; Mitchell, V. A.; Vaughan, C. W. Neuro-
pharmacology 2008, 54, 189−193.
(15) Kohno, M.; Hasegawa, H.; Inoue, A.; Muraoka, M.; Miyazaki,
T.; Oka, K.; Yasukawa, M. Biochem. Biophys. Res. Commun. 2006, 347,
827−832.
(16) Burstein, S. H.; Huang, S. M.; Petros, T. J.; Rossetti, R. G.;
Walker, J. M.; Zurier, R. B. Biochem. Pharmacol. 2002, 64, 1147−1150.
(17) Wiles, A. L.; Pearlman, R.-J.; Mari Rosvall, M.; Aubrey, K. R.;
Vandenberg, R. J. J. Neurochem. 2006, 99, 781−786.
(18) Bradshaw, H. B.; Rimmerman, N.; Hu, S. S.-J.; Benton, V. M.;
Stuart, J. M.; Masuda, K.; Cravatt, B. F.; O’Dell, D. K.; Walker, J. M.
BMC Biochem. 2009, 10, 14.
(19) Rimmerman, N.; Bradshaw, H. B.; Hughes, H. V.; Chen, J. S.-C.;
Hu, S. S. −J; McHugh, D.; Vefring, E.; Jahnsen, J. A.; Thompson, E. L.;
Masuda, K.; et al. Mol. Pharmacol. 2008, 74, 213−224.
(20) Bradshaw, H. B.; Rimmerman, N.; Hu, S. S.-J.; Burstein, S.;
Walker, J. M. Vitam. Horm. 2009, 81, 191−205.
ASSOCIATED CONTENT
■
S
* Supporting Information
1
Assignment of IR resonances, H and 13C NMR data, and d-
spacings for NAGs, atomic coordinate and isotropic displace-
ment parameters, selected bond distances and angles, and
torsion angles for NMG and NPG, representative IR, NMR,
PXRD, and hydrogen bonding data for select NAGs, and
crystallographic information in CIF format. This material is
AUTHOR INFORMATION
■
Corresponding Author
(21) Tan, B.; Yu, Y. W.; Monn, M. F.; Hughes, H. V.; O’Dell, D. K.;
Walker, J. M. J. Chromatogr. B 2009, 877, 2890−2894.
(22) Tan, B.; O’Dell, D. K.; Yu, Y. W.; Monn, M. F.; Hughes, H. V.;
Burstein, S.; Walker, J. M. J. Lipid Res. 2010, 51, 112−119.
(23) Larsson, K. In Physical Properties−Structural and Physical
Characteristics. The Lipid Handbook; Gunstone, F. D., Harwood, J.
*Prof. Musti J. Swamy. Tel: +91-40-2313-4807. Fax: +91-40-
Notes
The authors declare no competing financial interest.
4953
dx.doi.org/10.1021/cg500481u | Cryst. Growth Des. 2014, 14, 4944−4954