1 S. Szafert and J. A. Gladysz, Chem. Rev., 2006, 106, PR1; S. Szafert and
J. A. Gladysz, Chem. Rev., 2003, 103, 4175.
analysis of the reaction mixture. Interestingly, the best results were
observed in the absence of a matrix (see ESI{).
2 X. Y. Chaun, T. K. Wang and J. B. Donnet, New Carbon Mater., 2005,
20, 83; A. Lamperti and P. M. Ossi, Chem. Phys. Lett., 2002, 376, 662;
A. Scemama, P. Chaquin, M. C. Gazeau and Y. Benilan, Chem. Phys.
Lett., 2002, 361, 520; Y. P. Kudryavtsev, S. Evsyukov, M. Guseva,
V. Babaev and V. Khvostov, Chem. Phys. Carbon, 1997, 25, 1;
F. Cataldo, Polym. Int., 1997, 44, 191; L. Kavan and J. Kastner,
Carbon, 1994, 32, 1533.
3 Q. L. Zheng, J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel and
J. A. Gladysz, Chem.–Eur. J., 2006, 12, 6486.
4 T. Gibtner, F. Hampel, J.-P. Gisselbrecht and A. Hirsch, Chem.–Eur. J.,
2002, 8, 408.
5 S. Eisler, A. D. Slepkov, E. Elliott, T. Luu, R. McDonald,
F. A. Hegmann and R. R. Tykwinski, J. Am. Chem. Soc., 2005, 127,
2666.
6 R. Eastmond, D. R. M. Walton and T. R. Johnson, Tetrahedron, 1972,
28, 4601.
7 P. Siemsen, R. C. Livingston and F. Diederich, Angew. Chem., Int. Ed.,
2000, 39, 2633.
8 W. A. Chalifoux, M. J. Ferguson and R. R. Tykwinski, Eur. J. Org.
Chem., 2007, 1001.
The UV-vis data for the masked dodecayne 8 and the four-fold
dechlorosilylation dodecayne product 9 are shown in Fig. 2." The
differences in the two spectra are immediately apparent with that
for the dodecayne product showing the typical p–p* absorptions of
oligoynes. In the region between 330 and 405 nm (region I), several
vibrational bands, exhibiting increasing intensity with increasing
wavelength are clearly observable, reaching a maximum value of
e = 295000 M21 cm21 for the most intense band at 405 nm. At
longer wavelengths (region II), a number of much weaker
(e ,6000 M21 cm21) absorption bands are present (see inset in
Fig. 2). These low-intensity bands are characteristic of aryl-end-
capped oligoynes.4,11,17 The value of 562 nm for lmax is higher than
the values reported by Hirsch,18 and Walton,19 for shorter aryl
end-capped decaynes. However, it remains to be seen as to whether
saturation has been reached for this class of oligoyne.I To probe
whether this is the case, the octadecayne trimer will be our next
target.
9 R. Dembinski, T. Bartik, B. Bartik, M. Jaeger and J. A. Gladysz, J. Am.
Chem. Soc., 2000, 122, 810.
Dodecayne 9 represents the longest oligoyne possessing aryl
termini reported to-date. Although it may be possible to improve
the stability of the dodecayne by increasing the steric bulk of the
aryl end-caps, this mode of stabilisation alone is unlikely to
provide sufficient stability for the trimer in the series, namely the
octadecayne. Instead, we are currently investigating molecular
encapsulation methods, which will provide insulation along the
entire length of the conjugated framework,20,21 rather than relying
solely on stabilising groups at the oligoyne termini.
10 A. Orita and J. Otera, Chem. Rev., 2006, 106, 5387; Y. Tobe, I. Ohki,
M. Sonoda, H. Niino, T. Sato and T. Wakabayashi, J. Am. Chem. Soc.,
2003, 125, 5614; G. A. Adamson and C. W. Rees, J. Chem. Soc., Perkin
Trans. 1, 1996, 1535; F. Diederich and Y. Rubin, Angew. Chem., Int. Ed.
Engl., 1992, 31, 1101.
11 T. Luu, E. Elliott, A. D. Slepkov, S. Eisler, R. McDonald,
F. A. Hegmann and R. R. Tykwinski, Org. Lett., 2005, 7, 51; S. Eisler
and R. R. Tykwinski, J. Am. Chem. Soc., 2000, 122, 10736.
12 C. Schmitz, A.-C. Rouanet-Dreyfuss, M. Tueni and J.-F. Biellmann,
J. Org. Chem., 1996, 61, 1817; R. Yamaguchi, H. Kawasaki,
T. Yoshitome and M. Kawanisi, Chem. Lett., 1982, 1485;
R. L. Danheiser and D. J. Carini, J. Org. Chem., 1980, 45, 3925;
R. F. Cunico and E. M. Dexheimer, J. Am. Chem. Soc., 1972, 94,
2868.
13 Y. Takayama, C. Delas, K. Muraoka, M. Uemura and F. Sato, J. Am.
Chem. Soc., 2003, 125, 14163; M. J. Edelmann, M. A. Estermann,
V. Gramlich and F. Diederich, Helv. Chim. Acta, 2001, 84, 473;
R. E. Martin, U. Gubler, J. Cornil, M. Balakina, C. Boudon,
C. Bosshard, J.-P. Gisselbrecht, F. Diederich, P. Gu¨nter, M. Gross
and J.-L. Bre´das, Chem.–Eur. J., 2000, 6, 3622.
In summary, the synthesis of an aryl-end-capped dodecayne has
been achieved for the first time, in a controlled fashion from a
masked hexayne building block in which two of the internal
alkynes are protected as b-chlorovinylsilanes. This novel approach
to oligoyne assembly differs from the majority of previous
strategies: by using such a large monomer unit, only one oxidative
acetylenic coupling is required to access what is the longest aryl
end-capped oligoyne reported to-date. Furthermore, our approach
does not rely on oxidative coupling of long-chain terminal
oligoynes to afford the end-product; rather, the entire carbon
chain, 24 carbons in the case of dodecayne 9, is already installed
before the oligoyne is released, which prevents the formation of
shorter oligoynes resulting from loss of acetylene fragments that is
sometimes observed when traditional approaches are taken.4,5
We acknowledge The Leverhulme Trust (grant ref. F/00 094/T)
and the EPSRC (grant ref. EP/C532260/1) for post-doctoral
awards to S. M. E. S. and the University of Birmingham
(studentship to M. D. W.).
14 S. M. E. Simpkins, B. M. Kariuki, C. S. Arico´ and L. R. Cox, Org.
Lett., 2003, 5, 3971.
15 A. S. Batsanov, J. C. Collings, I. J. S. Fairlamb, J. P. Holland,
J. A. K. Howard, Z. Y. Lin, T. B. Marder, A. C. Parsons, R. M. Ward
and J. Zhu, J. Org. Chem., 2005, 70, 703; J.-H. Li, Y. Liang and
Y.-X. Xie, J. Org. Chem., 2005, 70, 4393; J.-H. Li, L. Yun and X.-D.
Zhang, Tetrahedron, 2005, 61, 1903; A. W. Lei, M. Srivastava and
X. M. Zhang, J. Org. Chem., 2002, 67, 1969.
16 A. Carpita, L. Mannocci and R. Rossi, Eur. J. Org. Chem., 2005, 1859;
A. Orsini, A. Vite´risi, A. Bodlenner, J. M. Weibel and P. Pale,
Tetrahedron Lett., 2005, 46, 2259.
17 T. R. Johnson and D. R. M. Walton, Tetrahedron, 1972, 28, 5221;
J. B. Armitage, N. Entwistle, E. R. H. Jones and M. C. Whiting,
J. Chem. Soc., 1954, 147.
18 lmax for a dendronised aryl end-capped decayne is 546 nm: see
ref. 4.
19 lmax for a phenyl end-capped decayne is 549 nm; see ref. 17.
20 S. M. E. Simpkins, B. M. Kariuki and L. R. Cox, J. Organomet. Chem.,
2006, 691, 5517.
Notes and references
{ Cu(OAc)2, Cu(NO3)2, CuI, CuCl, CuCl2, CuBr, CuBr2 and Cu(OTf)2
were investigated.
21 See also: C. Klinger, O. Vostirowsky and A. Hirsch, Eur. J. Org. Chem.,
2006, 1508; J. Stahl, J. C. Bohling, E. B. Bauer, T. B. Peters, W. Mohr,
J. M. Martin-Alvarez, F. Hampel and J. A. Gladysz, Angew. Chem., Int.
Ed., 2002, 41, 1872.
§ See ESI{ for full characterisation data.
" See ESI for a full breakdown of absorption peaks and their associated
molar extinction coefficients.{
I See ESI for a more detailed analysis.{
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 4035–4037 | 4037