by epoxidation9 and by cross metathesis of alkenyl epoxides
and allylsilanes.10 We now report a new route for the
synthesis of epoxyallylsilanes by silylcupration of allene,
followed by capture of the intermediate cuprate with enones
and final formation of the epoxide.
unsaturated oxocompounds affords oxoallylsilanes of type
2 (Scheme 2), which are useful building blocks for cyclo-
pentane annelations.13
In this paper, we describe the synthesis and cyclization of
epoxyallylsilanes of type 3, carrying the phenyldimethylsilyl
group. As it is shown below, Lewis acid-catalyzed intra-
molecular cyclization occurs with concomitant rearrangement
of the epoxy group (Table 2), thus showing that the behavior
Scheme 1
Table 1. Synthesis of Oxo- and Epoxyallylsilanes
For the past decade, we have been involved in the study
of the metallocupration reactions of allenes and acetylenes
and their synthetic applications.11,12 These reactions involve
the addition of copper to one end of a multiple bond and a
metal (Si or Sn) to the other, allowing the formation of
intermediates of type 1 (Scheme 2).
Scheme 2
a THF was used as a solvent. b BF3‚Et2O was used as a catalyst. c TMSCl
was used as a catalyst.
of phenyldimethylsilyl derivatives is perceptibly different
from that observed for the trimethylsilyl analogues (Scheme
1).
The intermediate cuprate 1 can be captured by a great
variety of electrophiles.11,12 In particular, the use of R,â-
Phenyldimethylsilylcopper13 reacted readily with allene at
-40 °C to give a vinyl copper intermediate 1, which was
smoothly added to the R,â-unsaturated ketones 4-7 and the
enals 8-10 to afford compounds 11-17 in good yield. All
the reactions were carried out in the presence of BF3‚OEt2
or TMSCl, which considerably increased the yield (Table
1). The oxoallylsilanes thus obtained were treated with
dimethylsulfonium methylide to give in good yield the
(8) (a) Proctor, G.; Russell, A. T.; Murphy, P. J.; Tan, T. S.; Mather, A.
N. Tetrahedron 1988, 44, 3953. (b) Molander, G. A.; Andrews, S. W. J.
Org. Chem. 1989, 54, 3114.
(9) Seyferth, D.; Wursthorn, K. R.; Mammarella, R. E. J. Org. Chem.
1977, 42, 3104.
(10) Langer, P.; Holtz, E. Synlett 2002, 110.
(11) SiCu of allenes and acetylenes: (a) Cuadrado, P.; Gonza´lez, A. M.;
Pulido, F. J.; Fleming, I. Tetrahedron Lett. 1988, 29, 1825. (b) Fleming, I.;
Rowley, M.; Cuadrado, P.; Gonza´lez, A. M.; Pulido, F. J. Tetrahedron 1989,
45, 413. (c) Barbero, A.; Cuadrado, P.; Gonza´lez, A. M.; Pulido, F. J.;
Fleming, I.; Sa´nchez, A. J. Chem. Soc., Perkin Trans. I 1995, 1525. (d)
Blanco, F. J.; Cuadrado, P.; Gonza´lez, A. M.; Pulido, F. J. Synthesis 1996,
42. (e) Barbero, A.; Blanco, Y.; Garc´ıa, C.; Pulido, F. J. Synthesis 2000,
1223. (f) Barbero, A.; Garc´ıa, C.; Pulido, F. J. Synlett 2001, 824.
(12) SnCu of allenes and acetylenes: (a) Barbero, A.; Cuadrado, P.;
Gonza´lez, A. M.; Pulido, F. J.; Fleming, I. J. Chem. Soc., Chem. Commun.
1990, 1030. (b) Barbero, A.; Cuadrado, P.; Gonza´lez, A. M.; Pulido, F. J.;
Fleming, I. J. Chem. Soc., Perkin Trans. 1 1992, 327. (c) Barbero, A.;
Cuadrado, P.; Gonza´lez, A. M.; Pulido, F. J.; Fleming, I. J. Chem. Res.
1990, 291. (d) Barbero, A.; Cuadrado, P.; Gonza´lez, A. M.; Pulido, F. J.;
Fleming, I. J. Chem. Soc., Chem. Commun. 1992, 351. (e) Barbero, A.;
Cuadrado, P.; Gonza´lez, A. M.; Pulido, F. J.; Rubio, R.; Fleming, I. J. Chem.
Soc., Perkin Trans. 1 1993, 1657. (f) Barbero, A.; Cuadrado, P.; Garc´ıa,
C.; Rinco´n, J. A.; Pulido, F. J. J. Org. Chem. 1998, 63, 7531. (g) Barbero,
A.; Pulido, F. J.; Rinco´n, J. A.; Cuadrado, P.; Galisteo, D.; Mart´ınez-Garc´ıa,
H. Angew. Chem. Int. Ed. 2001, 40, 2101.
(13) (a) Blanco, F. J.; Cuadrado, P.; Gonza´lez, A. M.; Pulido, F. J.;
Fleming, I. Tetrahedron Lett. 1994, 35, 8881. (b) Barbero, A.; Garc´ıa, C.;
Pulido, F. J. Tetrahedron Lett. 1999, 40, 6652. (c) Barbero, A.; Garc´ıa, C.;
Pulido, F. J. Tetrahedron 2000, 56, 2739. (d) Barbero, A.; Castren˜o, P.;
Garc´ıa, C.; Pulido, F. J. J. Org. Chem. 2001, 66, 7723.
4046
Org. Lett., Vol. 5, No. 22, 2003