10.1002/ejoc.201900105
European Journal of Organic Chemistry
COMMUNICATION
Cole, A. T. Dinkova-Kostova, P. Talalay, P. A. Cole, Proc. Natl. Acad.
Sci. USA 2010, 107, 9590; (c) J. A. Clulow, E. M. Storck, T. Lanyon-
Hogg, K. A. Kalesh, L. H. Jones, E. W. Tate, Chem. Comm. 2017, 53,
5182; (d) A. P. Lawson, M. J. C. Long, R. T. Coffey, Y. Qian, E.
Weerapana, F. El Oualid, L. Hedstrom, Cancer Res. 2015, 75, 5130;
(e) A. P. Lawson, D. W. Bak, D. A. Shannon, M. J. C. Long, T.
Vijaykumar, R. Yu, F. El Oualid, E. Weerapana, L. Hedstrom,
Oncotarget, 2017, 8, 51296; (f) M. Beija, C. A. M. Afonso, J. M. G.
Martinho, Chem. Soc. Rev. 2009, 38, 2410.
which is in equilibrium with 10a. Decomposition of 10a
accomplishes the target product 3a.
Conclusions
In summary, using the microwave technique, a practical and
general synthesis of ITCs from primary amines and carbon
disulfide has been reported. This protocol provides a facile and
efficient route to aliphatic and aromatic ITCs with a broad
substrate scope. The use of MW assistance, in place of extra
added desulfurating agents, for the decomposition of the
intermediate dithiocarbamates into ITCs provides an
operationally simple, safe, and environmentally benign synthetic
route to the target compounds.
[6]
(a) A. K. Mukerjee, R. Ashare, Chem. Rev. 1991, 91, 1; (b) L.
Brandsma, N. A. Nedolya, O. A. Tarasova, B. A. Trofimov, Chem.
Heterocycl. Compds. 2000, 36, 1241.
[7]
[8]
For recent review, see: G. Koutoulogenis, N. Kaplaneris, C. G. Kokotos,
Beilstein J. Org. Chem. 2016, 12, 462.
For recent papers, see: (a) E. Elhalem, R. Recio, S. Werner, F. Lieder,
J. M. Calderón-Montaño, M. López-Lázaro, I. Fernández, N. Khiar, Eur.
J. Med. Chem. 2014, 87, 552; (b) S. Gosling, C. El Amri, A. Tatibouët,
Synthesis 2014, 46, 1079; (c) E. L. Shelnut, S. P. Nikas, D. F. Finnegan,
N. Chiang, C. N. Serhan, A. Makriyannis, Tetrahedron Lett. 2015, 56,
1411; (d) M. Psurski, Ł. Janczewski, M. Świtalska, A. Gajda, T.
Goszczyński, J. Oleksyszyn, J, Wietrzyk, T. Gajda, Eur. J. Med. Chem.
2017, 132, 63; (e) Ł. Janczewski, M. Psurski, M. Świtalska, A. Gajda, T.
M. Goszczyński, J. Oleksyszyn, J, Wietrzyk, T. Gajda, ChemMedChem
2018, 13, 105; (f) L. Sanhosh, S. Durgamma, Shekharappa, V. V.
Sureshbabu, Org. Biomol. Chem. 2018, 16, 4874.
Experimental Section
CS2 (0.36 mL, 6 mmol) was added to a solution of aliphatic amines 1a−p
or aromatic amines 4a−p (2 mmol), Et3N (1.11 mL, 8 mmol) for aliphatic
amines 1a−p, or DBU (1.2 mL, 8 mmol) for aromatic amines 4a−p in dry
DCM (2 mL), and placed in pressure vial, equipped with a magnetic bar.
The mixture was stirred for 5 min at rt. After that MW-irradiation (with
initial 150 W power) was applied. The following conditions were used: 20
min at 90 °C for aliphatic amines 1a−p, and 20 min at 100 °C, for
aromatic amines 4a−p. Thereafter, the reaction mixture was diluted with
DCM (50 mL), and successively washed with H2O (5 mL), 1M HCl (5 mL),
H2O (5 mL) and then dried over anhydrous MgSO4. The crude product
was purified by flash chromatography on silica gel (7 g) using hexane as
eluent. Pure ITCs 3a−p and 6a−p were obtained after careful
evaporation of the solvent and removal of volatile residues under
reduced pressure. All the synthesized isothiocyanates, except compound
3h, are described in the literature.
[9]
For recent papers, see: (a) F. Ulatowski, J. Jurczak, J. Org. Chem.
2015, 80, 4235; (b) A. Gondela, M. D. Tomczyk, Ł. Przypis, K. Z.
Walczak, Tetrahedron 2016, 72, 5626.
[10] (a) M. Barone, A. Carol, E. Graziano, A. Marracco, P. Gemmellaro, A.
Santagati, V. Cardile, Mol. Divers. 2013, 17, 445; (b) C. Larsen, D. N.
Harpp, J. Org. Chem. 1981, 46, 2465; (c) S. Kim, K. Y. Yi, J. Org.
Chem. 1986, 51, 2613.
[11]
For selected papers, see: (a) U. Boas, M. H. Jakobsen, J. Chem. Soc.
Chem. Commun. 1995, 1995; (b) U. Boas, H. G. Gertz, J. B.
Christensen, P. M. H. Heegaard, Tetrahedron Lett. 2004, 45, 269; (c) M.
Psurski, M. Piguła, J. Ciekot, Ł. Winiarski, J. Wietrzyk, J. Oleksyszyn,
Tetrahedron Lett. 2012, 53, 5845; (d) R. Wong, S. J. Dolman, J. Org.
Chem. 2007, 72, 3969; (e) V. V. Sureshbabu, S. A. Naik, H. P.
Hemantha, N. Narendra, U. Das, T. N. Guru Row, J. Org. Chem. 2009,
74, 5260; (f) J. Nath, H. Ghosh, R. Yella, B. K. Patel, Eur. J. Org. Chem.
2009, 1849; (g) H. Munch, J. S. Hansen, M. Pittelkow, J. B. Christensen,
U. Boas, Tetrahedron Lett. 2008, 49, 3117; (h) N. Sun, B. Li, J. Shao,
W. Mo, B. Hu, Z. Shen, X. Hu, Beilstein J. Org. Chem. 2012, 8, 61; (i) H.
Ghosh, R. Yella, J. Nath, B. K. Patel, Eur. J. Org. Chem. 2008, 6189; (j)
Z. Fu, W. Yuan, N. Chen, Z. Yang, J. Xu, Green Chem. 2018, 20, 4484.
Acknowledgments
Authors are thankful to the Lodz University of Technology for its
support (Statutory Funds no 501/13/18/1/6228).
[12] (a) Y-Y. Liao, J-C. Deng, Y-P. Ke, X-L. Zhong, L. Xu, R-Y. Tang, W.
Zheng, Chem. Commun. 2017, 53, 6073; (b) T. Scattolin, A. Klein, F.
Schoenebeck, Org. Lett. 2017, 19, 1831; (c) J. Yu, J-H. Lin, J-C. Xiao,
Angew. Chem. Int. Ed. 2017, 56, 16669.
Keywords: isothiocyanates • desulfuration • dithiocarbamates •
amines • microwave chemistry
[1]
For selected reviews, see: (a) N. Juge, R. F. Mithen, M. Traka, Cell.
Mol. Life Sci. 2007, 64, 1105; (b) C. Fimognari, P. Hrelia, Mutat. Res.
Rev. Mutat. Res. 2007, 635, 90; (c) K. K. Brown, M. Hampton, Biochim.
Biophys. Acta 2011, 1810, 888; (d) A. Milelli, C. Fimognari, N. Ticchi, P.
Neviani, A. Minarini, V. Tumiatti, Mini Rev. Med. Chem. 2014, 14, 963.
For recent reviews, see: (a) V. Dufour, M. Stahl, C. Baysse,
Microbiology 2015, 161, 229; (b) L. Romeo, R. Iori, P. Rollin, P.
Bramanti, E. Mazzon, Molecules 2018, 23, 624.
[13] (a) Ł. Janczewski, A. Gajda, S. Frankowski, T. M. Goszczyński, T.
Gajda, Synthesis 2018, 50, 1141; For recent review, see: (b) Milstones
in microwave chemistry (Ed.: G. Keglevich), Springer International
Publishing, Switzerland 2016.
[14] (a) D. J. Halls, Microchim. Acta 1969, 57, 62; (b) S. J. Joris, K. I. Aspila,
C. L. Chakrabarti, Anal. Chem. 1970, 42, 647.
[2]
[3]
[15] Z. Zhang, H-H. Wu, Y-J. Tan, RSC Adv. 2013, 3, 16940.
[16] For recent review, see: (a) W-D. Rudorf, J. Sulfur Chem. 2007, 28, 295;
(b) A. A. Aly, A. B. Brown, T. M. I. Bedair, E. A. Ishak, J. Sulfur Chem.
2012, 33, 605.
N. Amara, R. Gregor, J. Rayo, R. Dandela, E. Daniel, N. Liubin, H. M.
Willems, A. Ben-Zvi, B. P. Krom, M. M. Meijler, ChemBioChem. 2016,
17, 825.
[17] (a) M-L. Wang, B-L. Liu, Ind. Eng. Chem. Res. 1995, 34, 3688; (b) M-L.
Wang, B-L. Liu, J. Mol. Catal. A-Chem. 1996, 105, 49.
[4]
[5]
H. Wu, S. Zhang, J. Zhang, G. Liu, J. Shi, L. Zhang, X. Cui, M. Ruan,
Q. He, W. Bu, Adv. Funct. Mater. 2011, 21, 1850.
[18] M. T. C. Ang, L. Phan, A. K. Alshamrani, J. R. Hariani, R. Wang, G.
Schatte, N. J. Mosey, P. G. Jessop, Eur. J. Org. Chem. 2015, 7334.
(a) J. V. Cross, J. M. Rady, F. V. Foss Jr, C. E. Lyons,T. L. Macdonald,
D. J. Templeton, Biochem. J. 2009, 423, 315; (b) Y-H. Ahn, Y. Hwang,
H. Liu, X. J. Wang, Y. Zhang, K. K. Stephenson, T. N. Boronina, R. N.
This article is protected by copyright. All rights reserved.