Scheme 2
Scheme 3
phenol and dihydroquinone intermediates. The new approach
establishes, for the first time, a selective route to the GA
quinone, opening up a new route to GA and analogues of
this important template. In addition, the structure of the
methoxyquinone product is unambiguously established using
NMR, UV, and X-ray analysis with comparison to GA,
ortho-quino GA 2, and a simple model compound.
As a model for the GA synthesis, trimethoxy benzamide
3 was produced and explored for dealkylative quinone
formation (Scheme 3). An early GA-model study reported
by Schill and co-workers employed a trimethoxy substrate
that was dealkylated to the hydroxyquinone.6 The R,â-
unsaturated precursor to 3 was made from the corresponding
benzaldehyde, which was described in a previous report.7
Treatment with the standard oxidants, ceric ammonium
nitrate (CAN)8 or silver oxide, rapidly produced quinone
product in essentially quanitative isolated yields. CoF2 and
MnO2 gave lower yields of product, 50 and 25%, respec-
tively.9 Hypervalent iodine-based oxidants failed to give
product in this case.10 Unlike lactam 1 where conformational
effects appear to govern the reaction outcome, no trace of
aza-quinone was detected with 3. In this case, one-electron
removal gives radical cation 4 where the p-methoxyls
stabilize the charge through lone-pair donation. Addition of
water, loss of methanol, a proton, and an additional electron
gives intermediate 5.11 Water can then attack either ortho or
para to the carbonyl prior to quinone formation. In contrast
to previous reports of 1,2,4-trimethoxybenzenes where para-
quinone products were obtained,5 quinone 6 was also shown
to be the unexpected ortho-quinone. Single-crystal X-ray
analysis unambiguously identified the structure as shown.12
UV data of 6 was also obtained and compared to GA and
ortho-quino-GA 2. The λmax at 300 nm for the π-π* (CHCl3,
K-band) of 6 is very close to the energy of this transition
for 2 (λmax 303 nm).13 The corresponding value for GA is
much higher at 311 nm. Attack at the ortho position may be
due to steric factors or destabilization of the allylic cation at
the para position of 5. The amide may force the methyl ether
at this position to adopt a conformation that does not promote
lone-pair donation in this case.
(3) GA derivatives: (a) Rinehart, K. L.; McMillan, M. W.; Witty, T.
R.; Tipton, C. D.; Shield, L. S. Li, L. H.; Reusser, F. Bioorg. Chem. 1977,
6, 353. (b) Schnur, R. C.; Corman, M. L J. Org. Chem. 1994, 59, 2581. (c)
Schnur, R. C.; Corman, M. L.; Gallaschun, R. J.; Cooper, B. A.; Dee, M.
F.; Doty, J. L.; Muzzi, M. L.; Moyer, J. D.; DiOrio, C. I.; Barbacci, E. G.;
Miller, P. E.; O’Brien, A. T.; Morin, M. J.; Foster, B. A.; Pollack, V. A.;
Savage, D. M.; Sloan, D. E.; Pustilnik, L. R.; Moyer, M. P. J. Med. Chem.
1995, 38, 3806.
(4) Herbimycin A: (a) Nakata, M.; Osumi, T.; Ueno, A.; Kimura, T.
Tamai, T.; Tatsuta, K. Tetrahedron Lett. 1991, 32, 6015. Macbecin I: (b)
Baker, R.; Castro, J. L. J. Chem. Soc., Perkin Trans. 1 1990, 47. (c) Evans,
D. A.; Miller, S. J.; Ennis, M. D. J. Org. Chem. 1993, 58, 471. (d) Panek,
J. S.; Xu, F.; Rondon, A. C. J. Am. Chem. Soc. 1998, 120, 4113.
(5) Trimethoxy substrates normally give p-quinone products: (a) Cam-
eron, D. W.; Feutrill, G. I.; Patti, A. F.; Perlmutter, P.; Sefton, M. A. Aust.
J. Chem. 1982, 35, 1501. (b) Witiak, D. T.; Loper, J. T.; Ananthan, S.;
Almerico, A. M.; Verhoef, V. L.; Filppi, J. A. J. Med. Chem. 1989, 32,
1636. (c) Kozuka, T.; Bull. Chem. Soc. Jpn. 1982, 55, 2415. (d) Cheng, A.
C.; Castagnoli, N. J. Med. Chem. 1984, 27, 513. (e) Michael, J. P.; Cirillo,
P. F.; Denner, L.; Hosken, G. D.; Howard, A. S.; Tinkler, O. S. Tetrahedron
1990, 46, 7923. (f) Luly, J. R.; Rapoport, H. J. Org. Chem. 1981, 46, 2745.
(g) Kitahara, Y.; Nakahara, S.; Shimizu, M.; Yonezawa, T.; Kubo, A.
Heterocycles 1993, 36, 1909.
The shortcomings of the dealkylation route prompted the
investigation of the phenol and dihydroquinone strategies.
An unsaturated amide with additional functionality was
considered to be an improved model for GA. The route to
the p-di-MOM-protected hydroquinone began with meth-
oxyhydroquinone 8 (Scheme 4). Protection, formylation,14
and nitration gave 10a (R ) MOM) in high overall yield.
(6) Schill, G.; Merkel, C.; Zu¨rcher, C. Liebigs Ann. Chem. 1977, 288.
Trimethoxyamide was converted to the hydroxyquinone with boron tribro-
mide and alkylated with diazomethane. These conditions led only to
decomposition with 1, and other precursors led to GA.
(7) Andrus, M. B.; Meredith, E. L.; Soma Sekhar, B. B. V. Org. Lett.
2001, 3, 259.
(11) For a recent mechanistic investigation of dealkylative quinone
formation, see: Rathore, R.; Bosch, E.; Kochi, J. K. J. Chem. Soc., Perkin
Trans. 2 1994, 1157.
(12) X-ray data: orthorhombic space group P212121, a ) 7.359, b )
8.645, c ) 21.12 Å, independent data R1 ) 0.038. The Supporting
Information contains full details.
(8) Krohn, K.; Frese, P.; Flo¨rke, U. Chem. Eur. J. 2000, 6, 3887.
(9) Tomatsu, A.; Takemura, S.; Hashimoto, K.; Nakata, M. Synlett 1999,
1474.
(10) Tohma, H.; Morioka, H.; Harayama, Y.; Hashizume, M.; Kita, Y.
Tetrahedron Lett. 2001, 42, 6899.
(13) For a discussion of UV-structure correlation, see: Spectrometric
Identification of Organic Compounds, 5th ed.; Silverstein, R. M., Bassler,
G. C., Morrill, T. C., Eds.; John Wiley & Sons: New York, 1991; Chapter
7.
(14) Gilman, H.; Thirtle, J. R. J. Am. Chem. Soc. 1944, 66, 858.
3860
Org. Lett., Vol. 5, No. 21, 2003