Communication
Journal of Materials Chemistry C
2 A. Teichler, J. Perelaer and U. S. Schubert, J. Mater. Chem. C,
2013, 1, 1910.
3 H. W. Choi, T. Zhou, M. Singh and G. E. Jabbour, Nanoscale,
2015, 7, 3338.
arrayed patterns of the conjugated polymer on a flexible PDMS
film (Fig. 6c and d). FTIR spectroscopic monitoring of the
reaction indicates that the starting TPA and B2CN disappeared
24 h after inkjet printing at 20 1C (Fig. S5†). Comparison of the
FTIR spectrum of the conjugated polymer obtained by the
inkjet printing with that of CN-PPV independently prepared
by the conventional solution synthesis demonstrates the effi-
ciency of the reactive inkjet printing method. In addition, the
photoluminescence (PL) spectrum of the product obtained
using the inkjet printing method (Fig. 6e, red line) is almost
identical to the one prepared by the solution based approach
(Fig. 6e, black line). The molecular weight of the polymer was
difficult to obtain owing to the insoluble nature of the polymer.
However, comparison of the emission spectra displayed in
Fig. 6e suggests that at least oligomeric conjugated materials
are produced by the reactive inkjet printing, since a red shifted
emission centred at 635 nm was observed. The complete
disappearance of the starting materials observed in the IR
analysis is additional supporting evidence for the formation
of the polymeric materials.
4 A. Teichler, Z. Shu, A. Wild, C. Bader, J. Nowotny,
G. Kirchner, S. Harkema, J. Perelaer and U. S. Schubert,
Eur. Polym. J., 2013, 49, 2186.
5 E. Tekin, H. Wijlaars, E. Holder, D. A. M. Egbe and
U. S. Schubert, J. Mater. Chem., 2006, 16, 4294.
6 A. Wild, A. Teichler, C.-L. Ho, X.-Z. Wang, H. Zhan,
F. Schlu¨tter, A. Winter, M. D. Hager, W.-Y. Wong and
U. S. Schubert, J. Mater. Chem. C, 2013, 1, 1812.
7 J. Cho, K.-H. Shin and J. Jang, Thin Solid Films, 2010,
518, 5066.
8 T. C. Gomes, C. J. L. Constantino, E. M. Lopes, A. E. Job and
N. Alves, Thin Solid Films, 2012, 520, 7200.
9 J. Jang, J. Ha and J. Cho, Adv. Mater., 2007, 19, 1772.
10 Y. Yoshioka, P. D. Calvert and G. E. Jabbour, Macromol.
Rapid Commun., 2005, 26, 238.
11 Y. Yoshioka and G. E. Jabbour, Adv. Mater., 2006, 18, 1307.
12 B. Yoon, D.-Y. Ham, O. Yarimaga, H. An, C. W. Lee and
J.-M. Kim, Adv. Mater., 2011, 23, 5492.
Conclusion
13 B. Yoon, H. Shin, E.-M. Kang, D. W. Cho, K. Shin, H. Chung,
C. W. Lee and J.-M. Kim, ACS Appl. Mater. Interfaces, 2013,
5, 4527.
14 B. Yoon, H. Shin, O. Yarimaga, D.-Y. Ham, J. Kim, I. S. Park
and J.-M. Kim, J. Mater. Chem., 2012, 22, 8680.
15 B. Yoon, I. S. Park, H. Shin, H. J. Park, C. W. Lee and
J.-M. Kim, Macromol. Rapid. Commun., 2013, 34, 731.
16 P. J. Smith and A. Morrin, J. Mater. Chem., 2012, 22, 10965.
17 P. J. Bracher, M. Gupta and G. M. Whitesides, Soft Matter,
2010, 6, 4303.
We have utilized a reactive ink system to fabricate fluorescent
organic molecular arrays. Inkjet printing of aromatic aldehyde,
aromatic nitrile, and base solutions afforded the efficient
synthesis of a luminescent cyanostilbene derivative DBDCS by
an in situ condensation reaction. The reaction was probed by IR
and NMR analyses, and clean product formation was observed
after a 24 h reaction. The luminescent cyanostilbene derivative
displayed two different phases (B- and G-forms) depending on
the substrate used. The B-form product was obtained when a
glass substrate was employed, while the G-form cyanostilbene
was produced when the reactive inkjet printing was carried out
on a PDMS film. Regardless of the substrate used, the in situ
prepared DBDCS shows vapor-chromic and thermochromic
behaviors. A cyanostilbene derivative library was also fabricated
¨
18 H. Meier, U. Loffelmann, D. Mager, P. J. Smith and
J. G. Korvink, Phys. Status Solidi A, 2009, 206, 1626.
19 K. Kim, S. I. Ahn and K. C. Choi, Curr. Appl. Phys., 2013, 13, 1870.
20 M. Abulikemu, E. H. Da’as, H. Haverinen, D. Cha, M. A. Malik
and G. E. Jabbour, Angew. Chem., Int. Ed., 2014, 53, 420.
21 S. M. Bidoki, J. Nouri and A. A. Heidari, J. Micromech.
Microeng., 2010, 20, 055023.
by employing various aromatic aldehydes.
A fluorescent
material library was also readily prepared through in situ con-
densation reaction of reactive inks. Facile synthesis of a lumi-
nescent conjugated polymer is an additional meritorious
feature of this reactive inkjet method. The straightforward
approach described above should be useful for the preparation
of various stimulus-responsive organic materials.
22 Z.-K. Kao, Y.-H. Hung and Y.-C. Liao, J. Mater. Chem., 2011,
21, 18799.
23 X.-D. Sun, K.-A. Wang, Y. Yoo, W. G. Wallace-Freedman, C. Gao,
X.-D. Xiang and P. G. Schultz, Adv. Mater., 1997, 9, 1046.
24 H. Cha, S. I. Ahn and K. C. Choi, Curr. Appl. Phys., 2010,
10, e109.
25 A. Hansen, R. Zhang and M. Bradley, Macromol. Rapid.
Commun., 2012, 33, 1114.
26 A. Liberski, R. Zhang and M. Bradley, Chem. Commun., 2009,
334.
27 R. Zhang, A. Liberski, F. Khan, J. J. Diaz-Mochon and
M. Bradley, Chem. Commun., 2008, 1317.
Acknowledgements
We thank the National Research Foundation of Korea for
financial support through the Basic Science Research Program
(2014R1A2A1A01005862, 2012R1A6A1029029).
28 R. Zhang, A. Liberski, R. S. Martin and M. Bradley, Bio-
materials, 2009, 30, 6193.
29 A. Hansen, H. K. Mjoseng, R. Zhang, M. Kalloudis,
V. Koutsos, P. A. de Sousa and M. Bradley, Adv. Healthcare
Mater., 2014, 3, 848.
Notes and references
1 B.-J. de Gans, P. C. Duineveld and U. S. Schubert, Adv.
Mater., 2004, 16, 203.
This journal is ©The Royal Society of Chemistry 2015
J. Mater. Chem. C, 2015, 3, 2732--2736 | 2735