Macromolecules, Vol. 38, No. 13, 2005
Star-Shaped Aromatic Polyamides 5531
L.; Astruc, D.; Gnanou, Y. Macromolecules 1998, 31, 6748.
(d) Zhang, X.; Goethals, E. J.; Loontjens, T.; Derks, F.
Macromol. Rapid Commun. 2000, 21, 472.
of the initiator units and the area of low local concen-
tration of them where self-polymerization would be
liable to occur. Contamination of the homopolymer in
the synthesis of star polymers with multifunctional
initiators turned out to be a unique problem in conden-
sative chain-growth polymerization, in which there is
a possibility of self-polymerization of monomers because
it does not occur in the living addition polymerization
method with multifunctional initiators.
(3) (a) Hawker, C. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1456.
(b) Ueda, J.; Matsuyama, M.; Kamigaito, M.; Sawamoto, M.
Macromolecules 1998, 31, 557. (c) Angot, S.; Murthy, K. S.;
Taton, D.; Gnanou, Y. Macromolecules 1998, 31, 7218. (d)
Matyjaszewski, K.; Miller, P. J.; Pyun, J.; Kickelbick, G.;
Diamanti, S. Macromolecules 1999, 32, 6526. (e) Heise, A.;
Hedrick, J. L.; Frank, C. W.; Miller, R. D. J. Am. Chem. Soc.
1999, 121, 8647.
(4) (a) Trollsås, M.; Hedrick, J. L.; Mecerreyes, D.; Dubois, Ph.;
Je´roˆme, R.; Ihre, H.; Hult, A. Macromolecules 1998, 31, 2756.
(b) Chang, J. Y.; Ji, H. J.; Han, M. J.; Rhee, S. B.; Cheong,
K.; Yoon, M. Macromolecules 1994, 27, 1376. (c) Hecht, S.;
Ihre, H.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1999, 121, 9239.
(5) (a) Kricheldorf, H. R.; Adebahr, T. Makromol. Chem. 1993,
194, 2103. (b) Kricheldorf, H. R.; Stukenbrock, T. Polymer
1997, 38, 3373. (c) Kricheldorf, H. R.; Stukenbrock, T.;
Friedrich, C. J. Polym. Sci., Part A: Polym. Chem. 1998, 36,
1387. (d) Honda, K.; Maruyama, T.; Yamamoto, T. Synth.
Met. 1997, 90, 153. (e) Nagase, Y.; Nakagawa, J. Kobunshi
Ronbunshu 2000, 57, 678.
(6) (a) Aujard, I.; Baltaze, J.-P.; Baudin, J.-B.; Cogne´, E.; Ferrage,
F.; Jullien, L.; Perez, E.; Pre´vost, V.; Qian, L. M.; Ruel, O. J.
Am. Chem. Soc. 2001, 123, 8177. (b) Abd-El-Aziz, A. S.; Todd,
K. E.; Afifi, T. H. Macromol. Chem. Phys. 2002, 23, 113. (c)
Li, B.; Li, J.; Fu, Y.; Bo, Z. J. Am. Chem. Soc. 2004, 126, 3430.
(d) Nicolas, Y.; Blanchard, P.; Levillain, E.; Allain, M.;
Mercier. N.; Roncali, J. Org. Lett. 2004, 6, 273.
(7) (a) Yokozawa, T.; Asai, T.; Sugi, R.; Ishigooka, S.; Hiraoka,
S. J. Am. Chem. Soc. 2000, 122, 8313. (b) Yokozawa, T.;
Suzuki, Y.; Hiraoka, S. J. Am. Chem. Soc. 2001, 123, 9902.
(c) Yokozawa, T.; Taniguchi, T.; Suzuki, Y.; Yokoyama, A. J.
Polym. Sci., Part A: Polym. Chem. 2002, 40, 3460. (d)
Yokoyama, A.; Iwashita, K.; Hirabayashi, K.; Aiyama, K.;
Yokozawa, T. Macromolecules 2003, 36, 4328. (e) Yokoyama,
A.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2004, 37,
1169.
Conclusion
We have demonstrated that a condensative chain-
growth polymerization technique is applicable to prepa-
ration of star-shaped aromatic polyamides with con-
trolled arm length by the use of multifunctional initiators.
The polymerization of 1 with phenyl benzenepolycar-
boxylates (2a and 2b) as multifunctional initiators did
not proceed homogeneously from each initiator site
probably because of steric hindrance around the phenyl
ester moieties in 2. In contrast, in the polymerization
with trifunctional initiator 3 containing the benzyloxy
spacers, the three phenyl ester moieties of 3 initiated
polymerization of 1 homogeneously to yield a three-
armed aromatic polyamide with a controlled arm length.
However, the polymerization at higher feed ratios of [1]0/
[3]0 afforded not only the three-armed polymer but also
a linear polymer without the 3 unit from the self-
polymerization of 1. This approach to star polymers by
condensative chain-growth polymerization will permit
the production of star block copolyamides having dif-
ferent aminoalkyl side chains and a well-defined se-
quence, as well as star block copolymers consisting of
aromatic polyamide and polymers from the living po-
lymerization of vinyl and cyclic monomers. Those results
will be reported in the near future.
(8) (a) Yokozawa, T.; Ogawa, M.; Sekino, A.; Sugi, R.; Yokoyama,
A. J. Am. Chem. Soc. 2002, 124, 15158. (b) Sugi, R.; Hitaka,
Y.; Sekino, A.; Yokoyama, A.; Yokozawa, T. J. Polym. Sci.,
Part A: Polym. Chem. 2003, 41, 1341. (c) Sugi, R.; Yokoyama,
A.; Yokozawa, T. Macromol. Rapid Commun. 2003, 24, 1085.
(9) Miller, T. M.; Kwock, E. W.; Neenan, T. X. Macromolecules
1992, 25, 3143.
Acknowledgment. This work was supported in part
by a Grant-in-Aid (12450377) for Scientific Research
from the Ministry of Education, Science, and Culture,
Japan.
(10) Deme, E. J. Org. Chem. 1976, 41, 3769.
(11) Uhrich, K. E.; Hawker, C. J.; Fre´chet, J. M. J. Macromolecules
1992, 25, 4583.
(12) The Mn values of linear polyamide determined by GPC based
on polystyrene standards were in good agreement with those
determined by 1H NMR spectra (see ref 7a).
References and Notes
(1) Quirk, P. K.; Tsai, Y. Macromolecules 1998, 31, 8016.
(2) (a) Shohi, H.; Sawamoto, M.; Higashimura, T. Macromolecules
1991, 24, 4926. (b) Jacob, S.; Majoros, I.; Kennedy, J. P.
Macromolecules 1996, 29, 8631. (c) Cloutet, E.; Fillaut, J.-
(13) Yokozawa, T.; Sugi, R.; Asai, T.; Yokoyama, A. Chem. Lett.
2004, 33, 272.
MA0473420