1354
D. J. Wardrop et al.
LETTER
(10) Previous syntheses of 5: (a) Broeders, F.; Braekman, J. C.;
Daloze, D. Bull. Soc. Chim. Belg. 1997, 106, 377.
(b) Yamazaki, N.; Ito, T.; Kibayashi, C. Synlett 1999, 37.
(c) Yamazaki, N.; Ito, T.; Kibayashi, C. Tetrahedron Lett.
1999, 40, 739. (d) Honda, T.; Kimura, M. Org. Lett. 2000, 2,
3925.
(11) Compound 10 is readily available in two steps and in 78%
overall yield from 2-methylanisole: Zubaidha, P. K.;
Chavan, S. P.; Racherla, U. S.; Ayyangar, N. R. Tetrahedron
1991, 47, 5759.
include i) construction the 6,6′-disubstituted piperidinone
ring using an N-alkoxy-N-acylnitrenium ion-induced spi-
rocyclization and ii) exploitation of the cyclohexa-2,5-di-
enone generated in this transformation as a latent 1,6-
dicarbonyl. Further application of the nitrenium ion spiro-
cyclization-dienone cleavage strategy outlined herein is
now underway in this laboratory. Our progress will be re-
ported in due course.
(12) Experimental Procedure for Preparation of Dienone 8:
To a suspension of phenyliodine(III) bis(trifluoroacetate)
(PIFA) (2.290 g, 5.16 mmol) in MeOH (10 mL), at –78 °C,
was added a cold (–78 °C) solution of N-methoxyamide 9
(1.020 g, 4.30 mmol) in CH2Cl2 (10 mL) via cannula. The
reaction mixture was then allowed to warm to 15 °C (internal
temperature) over 1.5 h whereupon H2O (10 mL) was added
and the cooling bath removed. After stirring for 10 min, the
organic and aqueous phases were separated and the aqueous
phase was extracted with CH2Cl2 (3 × 20 mL). The
combined organic extracts were dried (Na2SO4), filtered, and
concentrated under reduced pressure and the residue purified
by flash chromatography over silica gel (EtOAc/hexanes,
1:1) to provide 8 (855 mg, 90%) as a colorless oil.
Recrystallization from EtOAc/hexanes yielded 8 as white
crystals: Mp 97–99 °C. Rf = 0.35 (EtOAc). FT-IR(film):
Acknowledgment
We thank the University of Illinois at Chicago, the National Institu-
tes of Health (GM59157), and the National Science Foundation
(HRD0000341) for financial support. J.A.O. thanks the UIC Sum-
mer Research Opportunities Program (SROP) for financial support.
References
(1) Abramovitch, R. A.; Jeyaraman, R. In Azides and Nitrenes:
Reactivity and Utility; Scriven, E. F. V., Ed.; Academic
Press: Orlando, FL, 1984, 297–357.
(2) Recent notable exceptions include: (a) Itoh, N.; Sakamoto,
T.; Miyazawa, E.; Kikugawa, Y. J. Org. Chem. 2002, 67,
7424. (b) Romero, A. G.; Darlington, W. H.; McMillan, M.
W. J. Org. Chem. 1997, 62, 6582. (c) de Sousa, J. D. F.;
Rodrigues, J. A. R.; Abramovitch, R. A. J. Am. Chem. Soc.
1994, 116, 9745. (d) Dalidowicz, P.; Swenton, J. S. J. Org.
Chem. 1993, 58, 4802. (e) Vedejs, E.; Sam, H. Tetrahedron
Lett. 1992, 33, 3261. (f) Rudchenko, V. F.; Ignatov, S. M.;
Kostyanovsky, R. G. J. Chem. Soc., Chem. Commun. 1990,
261. (g) Kikugawa, Y.; Kawase, M. Chem. Lett. 1990, 581.
(3) See, for example: Abramovitch, R. A.; Ye, X. C. J. Org.
Chem. 1999, 64, 5904.
(4) For reviews of the chemistry of N-alkoxy-N-acylnitrenium
ions, see: (a) Kikugawa, Y. Rev. Heteroatom Chem. 1996,
15, 263. (b) Glover, S. A. Tetrahedron 1998, 54, 7229.
(5) (a) Wardrop, D. J.; Basak, A. Org. Lett. 2001, 3, 1053.
(b) Wardrop, D. J.; Zhang, W. Org. Lett. 2001, 3, 2353.
(c) Wardrop, D. J.; Burge, M. S.; Whang, Z.; Ortíz, J. A.
Tetrahedron Lett. 2003, 43, 2587.
νmax = 2933(br), 1674, 1642, 1445, 1376, 1071, 939,
823 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.89 (dd,
J = 10.0, 3.2 Hz, 1 H) 6.70–6.68 (m, 1 H), 6.32 (d, J = 10.0
Hz, 1 H), 3.72 (s, 3 H), 2.59 (t, J = 2.6 Hz, 2 H), 2.07–1.99
(m, 2 H), 1.96–1.90 (m, 5 H). 13C NMR (100 MHz, CDCl3):
δ = 185.3, 168.4, 148.6, 143.9, 136.7, 129.9, 64.5, 64.0, 35.8,
33.3, 18.4, 15.9. HRMS-EI calcd for C12H15NO3Na
[M + Na]+: 244.0950. Found: 244.0940. Anal. Calcd for
C12H15NO3: C, 65.14; H, 6.83; N, 6.33. Found: C, 65.21; H,
6.84; N, 6.34.
(13) For a recent review of phenol oxidation, see: Moriarty, R.
M.; Prakash, O. In Organic Reactions, Vol. 57; Overman, L.
E., Ed.; Wiley: New York, 2001, 327.
(14) Braun, N. A.; Ousmer, M.; Bray, J. D.; Bouchu, D.; Peters,
K.; Peters, E. M.; Ciufolini, M. A. J. Org. Chem. 2000, 65,
4397.
(15) (a) Okazoe, T.; Takai, K.; Utimoto, K. J. Am. Chem. Soc.
1987, 109, 951. (b) For an isolated example of the selective
Takai ethylidenation of a ketoaldehyde, see: Meng, D.; Tan,
Q.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1999, 38, 3197.
(16) Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; Sarlo, F. D.
Tetrahedron Lett. 1990, 31, 3351.
(17) Data for Synthetic (±)-Adalinine (5): Colorless oil; Rf =
0.23 (EtOAc); FT-IR(film): νmax = 3380, 3206, 2930, 2862,
1712, 1657, 1458, 1402, 1363 cm–1. 1H NMR (500 MHz,
CDCl3): δ = 6.62 (br s, 1 H), 2.70 (d, J = 17.8 Hz, 1 H), 2.64
(d, J = 17.8 Hz, 1 H), 2.33–2.27 (m, 2 H), 2.14 (s, 3 H), 1.83–
1.54 (m, 6 H), 1.31–1.21 (m, 6 H), 0.88 (t, J = 7.0 Hz, 3 H).
13C NMR (125 MHz, CDCl3): δ = 207.5, 171.7, 56.4, 51.5,
39.4, 32.1, 32.0, 31.6, 31.4, 24.1, 22.7, 17.4, 14.2. HRMS-EI
calcd for C13H23NO2Na [M + Na]+: 248.1610. Found:
248.1616.
(6) (a) Attygalle, A. B.; Morgan, E. D. Chem. Soc. Rev. 1984,
13, 245. (b) Numata, A.; Ibuka, T. In The Alkaloids, Vol. 37;
Brossi, A., Ed.; Academic Press: New York, 1987, 193.
(c) Pinder, A. R. Nat. Prod. Rep. 1992, 9, 491; and
preceeding articles in this series.
(7) Lognay, G.; Hemptinne, J. L.; Chan, F. Y.; Gaspar, C. H.;
Marlier, M.; Braekman, J. C.; Daloze, D.; Pasteels, J. M. J.
Nat. Prod. 1996, 59, 510.
(8) Laurent, P.; Lebrun, B.; Braekman, J. C.; Daloze, D.;
Pasteels, J. M. Tetrahedron 2001, 57, 3403.
(9) (a) Hill, R. K.; Renbaum, L. A. Tetrahedron 1982, 38, 1959.
(b) King, A. G.; Meinwald, J. Chem. Rev. 1996, 96, 1105.
Synlett 2003, No. 9, 1352–1354 ISSN 0936-5214 © Thieme Stuttgart · New York