LETTER
Lasonolide A
1337
was immediately reduced with zinc borohydride in tolu-
ene–diethyl ether at –78 °C.26 This provided a 4:1 mixture
of cyclization substrate 8 and its C2 epimer, contaminated
with some trienol derived from b-elimination of 34 fol-
lowed by reduction. Treatment of this mixture with phe-
nylselenenyl chloride gave tetrahydropyran 35 in 48%
overall yield from 31, along with a 19% yield of 39 (pre-
sumably derived from addition of phenylselenenyl chlo-
ride to 35 followed by solvolysis of an intermediate
benzylic chloride) as a minor product. The structure of 31
was initially established by NMR spectroscopy and ulti-
mately by correlation with known material (vide infra).
The structure of 39 was established by X-ray crystallo-
graphic analysis of diol 40, prepared in 89% yield by re-
duction of 39 with tri-n-butyltin hydride.27 The
stereochemical course of the cyclization of 8 to 35 (and
the tetrahydropyran portion of 39) can once again be ratio-
nalized by anti addition of the electrophile and incipient
tetrahydropyran oxygen across the double bond via a
chair-like transition state in which the C2 and C6 substitu-
ents occupy equatorial sites. This cyclization transition
state would require that the incipient C3 methyl and C4 hy-
droxyl groups occupy axial sites in the cyclization transi-
tion state. We note that although no other tetrahydropyran
stereoisomers were detected, the mass balance for the
conversion of 31 to 35 and 39 suggests that minor stereo-
isomers may have been produced.28
Acknowledgment
We thank the Graduate School at OSU for a fellowship to SP.
References
(1) Horton, P. A.; Koehn, F. E.; Longley, R. E.; McConnell, O.
J. J. Am. Chem. Soc. 1994, 116, 6015.
(2) (a) Lee, E.; Song, H. Y.; Kang, J. W.; Kim, D.-S.; Jung, C.-
K.; Joo, J. M. J. Am. Chem. Soc. 2002, 124, 384. (b) Lee,
E.; Song, H. Y.; Joo, J. M.; Kang, J. W.; Kim, D. S.; Jung, C.
K.; Hong, C. Y.; Jeong, S. W.; Jeon, K. Bioorg. Med. Chem.
Lett. 2002, 12, 3519.
(3) For biological activity see: Longley, R. E.; Harmody, D. J.
Antibiot. 1991, 44, 93.
(4) For synthetic studies see ref. 2 and: (a) Gurjar, M. K.;
Kumar, P.; Rao, B. V. Tetrahedron Lett. 1996, 37, 8617.
(b) Gurjar, M. K.; Chakrabarti, A.; Rao, B. V.; Kumar, P.
Tetrahedron Lett. 1997, 38, 6885. (c) Nowakowski, M.;
Hoffmann, H. M. R. Tetrahedron Lett. 1997, 38, 1001.
(d) Beck, H.; Hoffmann, H. M. R. Eur. J. Org. Chem. 1999,
2991.
(5) Hart, D. J.; Leroy, V.; Merriman, G. H.; Young, D. G. J.
J. Org. Chem. 1992, 57, 5670.
(6) Hart, D. J.; Patterson, S.; Zakarian, A. Heterocycles 2000,
52, 1025; and references cited therein.
(7) Andersson, F.; Samuelsson, B. Carbohydr. Res. 1984, 129,
C1.
(8) Albrecht, H. P.; Moffatt, J. G. Tetrahedron Lett. 1970, 11,
1063.
(9) Ali, Y.; Vyas, D. M.; Nabinger, R. C.; Szarek, W. A.
Carbohydr. Res. 1982, 104, 183.
Once again, although we imagine there may be a number
of ways in which 35 might be used in a synthesis of ent-
lasonolide A, we focused on correlation of this material
with compound ent-3, the enantiomer of the intermediate
used by the Lee group in their approach to 1. Thus, protec-
tion of the secondary hydroxyl group as a benzyl ether
(35 → 36 in 64% yield) followed by bromohydrin forma-
tion (NBS in aqueous DMSO) gave a mixture of 37 and
the Ca-Cb diastereomer in 86% yield.29 This mixture was
reduced with tri-n-butyltin hydride to provide a mixture of
38 and its Ca epimer in 95% yield.30 Oxidation of this mix-
ture with the Dess–Martin periodinane gave ketone 41 in
89% yield.31 Bayer–Villiger oxidation of 41 using m-
chloroperoxybenzoic acid, followed by ethanolysis of the
resulting aryl ester, gave tetrahydropyran ent-3 in 65%
overall yield.32 Tetrahydropyran ent-3 was spectroscopi-
cally identical (1H and 13C NMR) to material prepared by
the Lee.19
(10) Ceccherelli, P.; Curini, M.; Marcotullio, M. C.; Epifano, F.;
Rosati, O. Synth. Commun. 1998, 28, 3057.
(11) Iversen, T.; Bundle, D. R. J. Chem. Soc., Chem. Commun.
1981, 1240.
(12) Garegg, P. J.; Samuelsson, B. Synthesis 1979, 469.
(13) Ghosh, T.; Hart, H. J. Org. Chem. 1989, 54, 5073.
(14) Kuivila, H. G.; Sommer, R. J. Am. Chem. Soc. 1967, 89,
5616.
(15) For seminalstudies on PhSeCl-initiated cycloetherifications,
see: Nicolaou, K. C.; Magolda, R. L.; Sipio, W. J.; Barnette,
W. E.; Lysenko, Z.; Joullie, M. M. J. Am. Chem. Soc. 1980,
102, 3784.
(16) Clive, D. L. J.; Chittattu, G.; Wong, C. K. J. Chem. Soc.,
Chem. Commun. 1978, 41.
(17) Kusakabe, M.; Kitano, Y.; Kobayashi, Y.; Sato, F. J. Org.
Chem. 1989, 54, 2085.
(18) Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975.
(19) We thank Professor Lee for providing us with copies of 1H
and 13C NMR spectra of 2 and 3.
(20) (a) Lewis, N.; McKen, P. W.; Taylor, R. J. K. Synlett 1991,
898. (b) Bellassoued, M.; Salemkour, M. Tetrahedron 1996,
52, 4607.
(21) Nagao, Y.; Kumagai, T.; Tamai, S.; Abe, T.; Kuramoto, Y.;
Taga, T.; Aoyagi, S.; Nagase, Y.; Ochiai, M.; Inoue, Y.;
Fujita, E. J. Am. Chem. Soc. 1986, 108, 4673.
(22) Garigipati, R. S.; Tschaen, D. M.; Weinreb, S. M. J. Am.
Chem. Soc. 1985, 107, 7790.
In summary, it has been shown that the cycloetherification
strategy outlined in Equation 1 can be used to prepare the
enantiomers of both the A-ring and B-ring intermediates
(2 and 3) in Lee’s synthesis of lasonolide A (1). The key
cycloetherifications proceed with excellent levels of dia-
stereoselectivity and the overall length of the syntheses of
ent-2 and ent-3 are similar to the Lee syntheses of the cor-
responding enantiomers. Nonetheless, the syntheses are
longer than desirable and improvements are needed be-
fore this chemistry will provide a practical route to la-
sonolide A (1) and derivatives thereof.33
(23) Corey, E. J.; Link, J. O. Tetrahedron Lett. 1990, 31, 601.
(24) (a) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481.
(b) Kaufman, T. S. Synlett 1997, 1377.
(25) (a) Hara, O.; Ito, M.; Hamada, Y. Tetrahedron Lett. 1998,
39, 5537. (b) Wipf, P.; Methot, J. L. Org. Lett. 2001, 3,
1261.
(26) Nakata, T.; Tani, Y.; Hatozaki, M.; Oishi, T. Chem. Pharm.
Bull. 1984, 32, 1411.
Synlett 2003, No. 9, 1334–1338 ISSN 1234-567-89 © Thieme Stuttgart · New York