K. Ikeshita et al. / Tetrahedron Letters 48 (2007) 3025–3028
3027
Table 3. Reduction of thioacetals
Lewis acid
1.0 equiv 1,4-CHD
SR'
SR'
SR'
R
R
DCE
Entry
Substrate
Lewis acid (mol %)
Temperature (°C)
Time (h)
Yielda (%)
1
2
3
4
5
6
PhCH(SEt)2
EtAlCl2 (5)
EtAlCl2 (5)
EtAlCl2 (5)
EtAlCl2 (5)
GaCl3 (5)
rt
rt
rt
80
80
rt
5.5
9
5.5
24
24
3
88
87
96
29b
61b
77
p-MeOC6H4CH(SEt)2
p-ClC6H4CH(SEt)2
Me(CH2)10CH(SEt)2
Me(CH2)10CH(SEt)2
PhCH(SPh)2
EtAlCl2 (5)
S
7
EtAlCl2 (5)
GaCl3 (10)
80
24
0
Ph
S
S
8
80
40
44b,c
Ph
S
9
10
11
12
PhC(Me)(SEt)2
PhCH(OMe)2
PhCH(OMe)2
PhCH(OMe)2
EtAlCl2 (5)
EtAlCl2 (5)
GaCl3 (5)
GaCl3 (5)
80
rt
rt
20
5
10
21
55b
0
28d
92b,d
80
a Determined by 1H NMR.
b 2.0 equiv of 1,4-CHD was used.
c The product is PhCH2S(CH2)3SCH2Ph.
d The product is PhCH2OMe.
Linstead, R. P. J. Chem. Soc. 1954, 3564; (c) Wolthuis, E.
J. Org. Chem. 1961, 26, 2215; (d) Hoover, F. W.; Coffman,
D. D. J. Org. Chem. 1964, 29, 3567.
SR'
SR'
MXn
SR'
R
RS MXn
H MXn
R
3. (a) Harvey, R. G.; Arzadon, L.; Grant, J.; Urberg, K. J.
Am. Chem. Soc. 1969, 91, 4535; (b) Muller, P.; Rocek, J. J.
Am. Chem. Soc. 1972, 94, 2716; (c) Stoos, F.; Rocek, J. J.
Am. Chem. Soc. 1972, 94, 2719; (d) Harvey, R. G.;
Sukumaran, K. B. Tetrahedron Lett. 1977, 2387.
4. (a) Bonthrone, W.; Reid, D. H. J. Chem. Soc. 1959, 2773;
(b) Lindow, D. F.; Harvey, R. G. J. Am. Chem. Soc. 1971,
93, 3786; (c) Fu, P. P.; Harvey, R. G. Tetrahedron Lett.
1974, 3217; (d) Fu, P. P.; Harvey, R. G. J. Org. Chem.
1977, 42, 2407.
MXn
H H
H
H MXn
SR'
SR'
+
MXn
R
R
RS MXn
5. (a) Nakamichi, N.; Kawabata, H.; Hayashi, M. J. Org.
Chem. 2003, 68, 8272; (b) Tanaka, H.; Ikeno, T.; Yamada,
T. Synlett 2003, 4, 576.
+
+
MXn
RSH
H
6. (a) Harvey, R. G.; Nazareno, L.; Cho, H. J. Am. Chem.
Soc. 1973, 95, 2376; (b) Harvey, R. G.; Cho, H. J. Am.
Chem. Soc. 1974, 96, 2434; (c) Cho, H.; Harvey, R. G.
J. Org. Chem. 1975, 40, 3097; (d) Kitamura, M.; Shen, B.;
Liu, Y.; Zheng, H.; Takahashi, T. Chem. Lett. 2001,
646.
7. Blum, J.; Biger, S. Tetrahedron Lett. 1970, 1825.
8. (a) Barnet, E. de B.; Cook, J. W.; Nixon, I. G. J. Chem.
Soc. 1927, 504; (b) Holmes, J.; Pettit, R. J. Org. Chem.
1963, 28, 1695; (c) Eisch, J. J.; Sexsmith, S. R.; Singh, M.
Energy Fuel 1989, 3, 761.
9. (a) Linstead, R. P.; Braude, E. A.; Mitchell, P. W. D.;
Wooldridge, K. R. H.; Jackman, L. M. Nature 1952, 169,
100; (b) Brieger, G.; Nestrick, T. J. Chem. Rev. 1974, 74,
567; (c) Felix, A. M.; Heimer, E. P.; Lambros, T. J.;
Tzougraki, C.; Meienhofer, J. J. Org. Chem. 1978, 43,
4194; (d) McDermott, P. J.; Stockman, R. A. Org. Lett.
2005, 7, 27.
Scheme 2. Plausible reaction mechanism for the reduction of thio-
acetal by 1,4-CHD.
attack of the hydride complex to the activated thio-
acetal. The cyclohexadienyl cation reacts with thiolate
complex to afford thiol and benzene with regenerating
the Lewis acid.
In summary, we have developed a novel method for the
reduction of thioacetal to sulfide using 1,4-CHD. The
application of reduction system using 1,4-CHD is in
progress.
References and notes
10. (a) Chiba, S.; Cao, Z.; El Bialy, S. A. A.; Narasaka, K.
Chem. Lett. 2006, 35, 18; (b) Schmittel, M.; Mahajan, A.
A.; Bucher, G. J. Am. Chem. Soc. 2005, 127, 5324; (c)
Kitamura, M.; Mori, Y.; Narasaka, K. Tetrahedron Lett.
1. Fu, P. P.; Harvey, R. G. Chem. Rev. 1978, 78, 317.
2. (a) Braude, E. A.; Jackman, L. M.; Linstead, R. P. J.
Chem. Soc. 1954, 3548; (b) Braude, E. A.; Jackman, L. M.;