Scheme 1. Retrosynthetic Analysis of Guanacastepene A
Scheme 2 a
to (E)-4-methylhex-4-enal6 and oxidation furnished furyl
ketone 4.2m Enantioselective reduction of this material was
achieved by using (-)-B-chlorodiisopino-campheylborane
(DIP-Cl) in 94% ee. The absolute configuration was assigned
by analogy with literature precedence.7
The six-membered ring was formed via intramolecular
Heck reaction,8 using the method described by Jeffery.9
Under optimized conditions, alcohol 5 cyclized to give an
inseparable 5.1:1 mixture of 1 and its diastereomer 6 in good
yield. Protection of the secondary alcohol followed by
hydroboration/oxidation gave a mixture of diastereomeric
primary alcohols from which the major isomer 8 could be
separated by column chromatography.10
The relative configuration of alcohol 7 was elucidated via
extensive NMR studies as well as an X-ray structure of diol
8 (Figure 2), formed by desilylation of 7.
The favorable diastereoselectivity of the intramolecular
Heck reaction was found to be dependent on the presence
a Reagents and conditions: (a) n-BuLi, Et2O, -78 °C, then (E)-
4-methylhex-4-enal, 62%; (b) DMP, CH2Cl2, rt, 88%; (c) (-)-DIP-
Cl, THF, -20 °C, 75%; (d) Pd(OAc)2, Et3N, (n-Bu)4NBr, MeCN,
H2O, 75 °C, 83%; (e) TBDPSCl, imid., DMAP, CH2Cl2, 0 °C, 98%;
(f) (1) 9-BBN, THF, reflx., (2) EtOH, NaOH, H2O2, rt, 81%; (g)
HF‚pyr., pyr., THF, rt, 54%.
of the free secondary hydroxy group in 5. Protected versions
of 5 cyclized with decreased or inverted selectivity (Scheme
3). Similar observations concerning the directing effect of a
nearby functional group have been made by Overman in the
context of a total synthesis of gelsemine.11
Several methods can be envisaged to unravel the furan
and form the central seven-membered ring. A particularly
attractive one involving the rhodium-catalyzed decomposition
of a furyl diazo ester is shown in Scheme 4.
The reaction between carbenoids derived from diazocar-
bonyl compounds and furans provides rapid entry into 2,4-
diene-1,6-dicarbonyl systems. Intramolecular versions have
been described by Wenkert, Padwa, and Davies.12 To the
best of our knowledge, applications of this chemistry in the
synthesis of complex natural products have not yet been
described.
(2) (a) Snider, B. B.; Shi, B. Tetrahedron Lett. 2001, 42, 9123. (b) Snider,
B. B.; Hawryluk, N. A. Org. Lett. 2001, 3, 569. (c) Shi, B.; Hawryluk, N.
A.; Snider, B. B. J. Org. Chem. 2003, 68, 1030. (d) Magnus, P.; Waring,
M. J.; Ollivier, C.; Lynch, V. Tetrahedron Lett. 2001, 42, 4947. (e) Magnus,
P.; Ollivier, C. Tetrahedron Lett. 2002, 43, 9605. (f) Dudley, G. B.;
Danishefsky, S. J. Org. Lett. 2001, 3, 2399. (g) Dudley, G. B.; Tan, D. S.;
Kim, G.; Tanski, J. M.; Danishefsky, S. J. Tetrahedron Lett. 2001, 42, 6789.
(h) Tan, D. S.; Dudley, G. B.; Danishefsky, S. J. Angew. Chem., Int. Ed.
2002, 41, 2185. (i) Lin, S.; Dudley, G. B.; Tan, D. S.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 2002, 41, 2188. (j) Mehta, G.; Umarye, J. D. Org.
Lett. 2002, 4, 1063. (k) Mehta, G.; Umarye, J. D.; Gagliardini, V.
Tetrahedron Lett. 2002, 43, 6975. (l) Mehta, G.; Umarye, J. D.; Srinivas,
K. Tetrahedron Lett. 2003, 44, 4233. (m) Gradl, S. N.; Kennedy-Smith, J.
J.; Kim, J.; Trauner, D. Synlett 2002, 411. (n) Shipe, W. D.; Sorensen, E.
J. Org. Lett. 2002, 4, 2063. (o) Nguyen, T. M.; Lee, D. Tetrahedron Lett.
2002, 43, 4033. (p) Nguyen, T. M.; Seifert, R. J.; Mowrey, D. R.; Lee, D.
Org. Lett. 2002, 4, 3959. (q) Nakazaki, A.; Sharma, U.; Tius, M. A. Org.
Lett. 2002, 4, 3363. (r) Boyer, F.-D.; Hanna, I. Tetrahedron Lett. 2002, 43,
7469. (s) Du, X.; Chu, H. V.; Kwon, O. Org. Lett. 2003, 5, 1923.
(3) Efforts to render the RCM enantiotopos-selective have thus far met
with limited success.
(4) Kraus, G. A.; Wang, X. Synth. Commun. 1998, 28, 1093.
(5) Gorzynski, M.; Rewicki, D. Liebigs Ann. Chem. 1986, 625.
(6) Ho, N.; le Noble, W. J. J. Org. Chem. 1989, 54, 2018.
(7) Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. J. Am.
Chem. Soc. 1988, 110, 1539.
(8) (a) Kwon, O.; Su, D.-S.; Meng, D.; Deng, W.; D’Amico, D. C.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 1998, 37, 1880. For reviews,
see: (b) Link, J. T.; Overman, L. E. In Metal-catalyzed Cross-coupling
Reactions; Diederich, F., Stang, P. J., Eds.; Wiley: Weinheim, Germany,
1998; Chapter 6, pp 231-269. (c) Dounay, A. B.; Overman, L. E. Chem.
ReV. 2003, 103, 2945.
(9) Jeffery, T. Tetrahedron 1996, 52, 10113.
(10) The 9-BBN adduct was also found to readily engage in Suzuki
couplings.
Figure 2. X-ray structure of compound 8.
Org. Lett., Vol. 5, No. 22, 2003
4114