Communications
[4] For stoppering approaches to rotaxanes incorporating imine-
[13] J. F. Stoddart, Stereochemistry of Carbohydrates, Wiley-Inter-
science, New York, 1971.
containing dumbbells, see a) S. J. Cantrill, S. J. Rowan, J. F.
Stoddart, Org. Lett. 1999, 1, 1363 – 1366; b) S. J. Rowan, J. F.
Stoddart, Org. Lett. 1999, 1, 1913 – 1916; for rotaxanes incorpo-
rating an imine-containing macrocycle formed by clipping, see
c) P. T. Glink, A. I. Oliva, J. F. Stoddart, A. J. P. White, D. J.
Williams, Angew. Chem. 2001, 113, 1922 – 1927; Angew. Chem.
Int. Ed. 2001, 40, 1870 – 1875; d) M. Horn, J. Ihringer, P. T. Glink,
J. F. Stoddart, Chem. Eur. J. 2003, 17, 4046 – 4054; for a recent
example of the use of imines in other molecular self-assembly
processes, see e) M. Hochgürtel, R. Biesinger, H. Kroth, D.
Piecha, M. W. Hofmann, S. Kraus, O. Schaaf, C. Nicolau, A. V.
Eliseev, J. Med. Chem. 2003, 46, 356 – 358.
[14] a) S. A. Barker, E. J. Bourne, Adv. Carbohydr. Chem. 1952, 7,
137 – 207; b) J. A. Mills, Adv. Carbohydr. Chem. 1955, 10, 1 – 53;
c) R. U. Lemieux, J. Howard, Can. J. Chem. 1963, 41, 393 – 398.
[15] A good example is the acid-catalyzed reaction between glycerol
and isobutyraldehyde. Since the activation energy is less for the
formation of the five-membered (1,3-dioxolane) ring acetals,
they are formed faster under kinetic control than the six-
membered (1,3-dioxane) ring acetals—both the cis and the trans
isomers. However, since both reactions are reversible and the
dioxanes are more stable than the dioxolanes, the former
eventually constitute the major products of the reaction. More-
over, the acid-catalyzed equilibration of the dioxolane–dioxane
system proceeds via an oxycarbenium ion and does not
necessarily require water; see a) R. J. Abraham, H. D. Banks,
E. L. Eliel, O. Hofer, M. K. Kaloustian, J. Am. Chem. Soc. 1972,
94, 1913 – 1918; b) E. L. Eliel, S. H. Wilen, Stereochemistry of
Organic Compounds, Wiley, New York, 1994, pp. 678 – 682.
[16] I. J. Burden, J. F. Stoddart, J. Chem. Soc. Perkin Trans. 1 1975,
666 – 674 and 675 – 682.
[17] a) R. B. Jensen, O. Buchardt, S. E. Jorgensen, J. U. R. Nielsen, G.
Schroll, C. Altona, Acta Chem. Scand. Ser. B 1975, 29, 373 – 378;
b) J.-L. Gras, A. Poncet, Synth. Commun. 1992, 22, 405 – 409;
c) H. Senderowitz, A. Linden, I. Golender, S. Abramsom, B.
Fuchs, Tetrahedron 1994, 50, 9691 – 9706; d) H. Senderowitz, I.
Golender, B. Fuchs, Tetrahedron 1994, 50, 9707 – 9728; e) H.
Jatzke, K. Frische, M. Greenwald, I. Golender, B. Fuchs,
Tetrahedron 1997, 53, 4821 – 4834; f) A. Linden, H. Beckhaus,
S. P. Verevkin, C. Rückardt, B. Ganguly, B. Fuchs, J. Org. Chem.
1998, 63, 8205 – 8211; g) M. Grabarnik, N. G. Lemcoff, R. Madar,
S. Abramson, S. Weinman, B. Fuchs, J. Org. Chem. 2000, 65,
1636 – 1642; h) S. Abramson, E. Ashkenasi, K. Frische, I.
Goldberg, L. Golender, M. Greenwald, N. G. Lemcoff, R.
Madar, S. Weinman, B. Fuchs, Chem. Eur. J., in press.
[18] For a recent review, see S. J. Cantrill, A. R. Pease, J. F. Stoddart,
J. Chem. Soc. Dalton Trans. 2000, 3715 – 3734.
[5] For rotaxanes containing disulfide units in their dumbbell-
shaped components that are formed by riveting and stoppering
approaches, see a) A. G. Kolchinski, N. W. Alcock, R. A. Roes-
ner, D. H. Busch, Chem. Commun. 1998, 1437 – 1438; b) Y.
Furusho, T. Hasegawa, A. Tsuboi, N. Kihara, T. Takata, Chem.
Lett. 2000, 18 – 19; c) T. Oku, T. Furush, T. Takata, J. Polym. Sci.
Part A 2003, 41, 119 – 123; for examples of the use of disulfide
groups in other molecular self-assembly processes, see d) H.
Hioki, W. C. Still, J. Org. Chem. 1998, 63, 904 – 905; e) S.-W.
Tam-Chang, J. S. Stehouwer, J. Hao, J. Org. Chem. 1999, 64, 334 –
335; f) S. Otto, R. L. E. Furlan, J. K. M. Sanders, J. Am. Chem.
Soc. 2000, 122, 12063 – 12064; g) O. Ramström, J.-M. Lehn,
ChemBioChem 2000, 1, 41 – 48; h) S. Otto, R. L. E. Furlan, J. K.
M. Sanders, Science 2002, 297, 590 – 593; i) for the use of
disulfide groups in the amplification of a catalyst from a DCL,
see B. Brisig, J. K. M. Sanders, S. Otto, Angew. Chem. 2003, 115,
1308 – 1311; Angew. Chem. Int. Ed. 2003, 42, 1270 – 1273.
[6] a) D. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725 –
2828; b) Molecular Catenanes, Rotaxanes, and Knots (Eds.: J.-P.
Sauvage, C. Dietrich-Buchecker), Wiley-VCH, Weinheim, 1999.
[7] For an example of the use of acetals in the synthesis of natural
products, see A. Nadin, K. C. Nicolaou, Angew. Chem. 1996, 108,
1732 – 1766; Angew. Chem. Int. Ed. Engl. 1996, 35, 1622 – 1656.
[8] For examples of the use of esters in DCLs, see a) P. A. Brady, J.
K. M. Sanders, J. Chem. Soc. Perkin Trans. 1 1997, 3237 – 3253;
b) S. J. Rowan, J. K. M. Sanders, J. Org. Chem. 1998, 63, 1536 –
1546; c) G. Kaiser, J. K. M. Sanders, Chem. Commun. 2000,
1763 – 1764; d) P. S. Lukeman, J. K. M. Sanders, Tetrahedron
Lett. 2000, 41, 10171 – 10174.
[19] a) P. W. Feit, J. Med. Chem. 1964, 7, 14 – 17; b) M. Carmack, C. J.
Kelley, J. Org. Chem. 1968, 33, 2171 – 2173; c) J. Bourson, L.
Oliveros, Bull. Soc. Chim. Fr. 1977, 11, 1241.
[20] R. Fahrang, D. Sinou, Bull. Soc. Chim. Belg. 1989, 98, 387 – 393.
[21] A. B. Foster, A. H. Olavesen, J. M. Webber, J. Chem. Soc. 1961,
5095 – 5097.
[22] This percentage conversion is based on a comparison of the
integrals for all the acetal methine proton resonances in the
d = 4.4–5.5 ppm range.
[23] CsPF6 was obtained by adding a saturated aqueous solution of
NH4PF6 to an aqueous solution of CsCl. The resulting precipitate
was filtered off and dried under vacuum.
[24] This estimate of the extent of the conversion is based on the
integration of all the acetal methine proton signals in the 1H
NMR spectrum.
[25] The dynamic approach was equally successful in providing ll-1
starting from l-threitol. The optical rotation was approximately
equal to its enantiomer (dd-1), but of opposite sign ([a]D =
+ 19.0 (c = 1, CHCl3)).
[26] K. Frische, M. Greenwald, E. Ashkenasi, N. G. Lemcoff, S.
Abramson, L. Golender, B. Fuchs, Tetrahedron Lett. 1995, 36,
9193 – 9196.
[27] J. A. Marshall, J. D. Trometer, B. E. Blough, T. D. Crute, J. Org.
Chem. 1988, 53, 4274 – 4282.
[28] G. Dijkstra, W. H. Kruizinga, R. M. Kellogg, J. Org. Chem. 1987,
52, 4230 – 4234.
[29] Transacetalation has been used succesfully in the synthesis of
dendritic polyacetals; see N. G. Lemcoff, B. Fuchs, Org. Lett.
2002, 4, 731 – 734.
[9] For examples of the use of hydrazones in DCLs, see a) G. R. L.
Cousins, S.-A. Poulsen, J. K. M. Sanders, Chem. Commun. 1999,
1575 – 1576; b) R. L. E. Furlan, G. R. L. Cousins, J. K. M. Sand-
ers, Chem. Commun. 2000, 1761 – 1762; c) T. Bunyapaiboonsri,
O. Ramström, S. Lohmann, J.-M. Lehn, L. Peng, M. Goeldner,
ChemBioChem 2001, 2, 438 – 444; d) R. L. E. Furlan, Y.-F. Ng, S.
Otto, J. K. M. Sanders, J. Am. Chem. Soc. 2001, 123, 8876 – 8877;
e) G. R. L. Cousins, R. L. E. Furlan, Y.-F. Ng, J. E. Redman, J.
K. M. Sanders, Angew. Chem. 2001, 113, 437 – 442; Angew.
Chem. Int. Ed. 2001, 40, 423 – 428; f) R. L. E. Furlan, Y.-F. Ng,
G. R. L. Cousins, J. E. Redman, J. K. M. Sanders, Tetrahedron
2002, 58, 771 – 778; g) S. L. Roberts, R. L. E. Furlan, S. Otto, J.
K. M. Sanders, Org. Biomol. Chem. 2003, 1, 1625 – 1633.
[10] For an example of the use of anhydrides of hydroxyboraza-
aromatic compounds in DCLs, see P. J. Comina, D. Philp, B. M.
Kariuki, K. D. M. Harris, Chem. Commun. 1999, 2279 – 2280.
[11] For an example of the use of oximes in DCLs, see V. A.
Polyakov, M. I. Nelen, N. Nazarpack-Kandlousy, A. D. Ryabov,
A. V. Eliseev, J. Phys. Org. Chem. 1999, 12, 357 – 363.
[12] A number of dioxadiazadecalin–salen tautomeric macrocycles
and complexes have been shown to constitute dynamic combi-
natorial virtual libraries (DCVLs); see A. Star, I. Goldberg, B.
Fuchs, Angew. Chem. 2000, 112, 2797 – 2801; Angew. Chem. Int.
Ed. 2000, 39, 2685 – 2689.
4224
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 4220 –4224