1674
Reaction of 16 with 11, using potassium di-t-butylphenoxide (2.2 equiv.) as base in the presence of
18-crown-6 (THF solvent), afforded complex 18, which was directly demetallated under photochemical
conditions to afford 19 in 60% yield for two steps. The acidity of the benzylic proton on complex 11 is
not a problem for this coupling reaction, because its pKa is raised by the carboxylate anion that is formed
coincidentally. Removal of the Cbz protecting group, followed by cycloamidation using pentafluorophe-
nyl diphenylphosphinate (FDPP) as coupling reagent, to generate the active pentafluorophenyl ester in
situ,11 afforded the cyclized product 20 in 70% yield (Scheme 3).
Scheme 3.
Conclusions: We have shown in this paper that a convenient building block approach can be used
for the construction of the F-O-G peptido aryl ether ring system of ristocetin or teicoplanin molecules.
The final subunit for a ‘left-to-right’ strategy, complex 11, is readily prepared on a multigram scale,
and is easily stored and used when needed. While the amidation/cycloetherification approach, that has
been used for building the 16-membered rings such as 6, is problematic, the successful alternative is in
fact even more attractive from the standpoint of ruthenium chemistry, because the stoichiometric RuCp
system is retained for only one coupling step, and the ruthenium may be more efficiently recovered, as
Cp(CH3CN)3RuPF6, and recycled.
Acknowledgements
We are grateful to the National Institutes of Health for financial support of this research (GM-36925),
and to Penglie Zhang for preliminary experiments leading to this work. P.O.B. is grateful to the ARC,
Association pour la Recherche sur le Cancer, for partial personal financial support.
References
1. For recent reviews, see: Zhu, J. Exp. Opin. Ther. Patents 1999, 9, 1005. Nicoloau, K. C.; Boddy, C. N.; Bräse, S.; Winssinger,
N. Angew. Chem., Int. Ed. 1999, 38, 2096. For the mechanism of bacterial resistance, see: Wright, G. D.; Walsh, C. T. Acc.
Chem. Res. 1992, 25, 468. Walsh, C. T. Science 1993, 261, 308.
2. (a) Evans, D. E.; Wood, M. R.; Trotter, B. W.; Richardson, T. I.; Barrow, J. C.; Katz, J. L. Angew. Chem., Int. Ed. 1998,
37, 2700. Evans, D. A.; Dinsmore, C. J.; Watson, P. S.; Wood, M. R.; Richardson, T. I.; Trotter, B. W.; Katz, J. L. Angew.
Chem., Int. Ed. 1998, 37, 2704. Evans, D. A.; Dinsmore, C. J.; Ratz, A. M.; Evrard, D. A.; Barrow, J. C. J. Am. Chem. Soc.
1997, 119, 3417. Evans, D. A.; Barrow, J. C.; Watson, P. S.; Ratz, A. M.; Dinsmore, C. J.; Evrard, D. A.; DeVries, K. M.;
Ellman, J. E.; Rychnovsky, S. D.; Lacour, J. J. Am. Chem. Soc. 1997, 119, 3419. (b) Nicolaou, K. C.; Li, H.; Boddy, C. N.
C.; Ramanjulu, J. M.; Yue, T.-Y.; Natarajan, S.; Chu, X.-J.; Bräse, S.; Rübsam, F. Chem. Eur. J. 1999, 5, 2584. Nicolaou, K.
C.; Boddy, C. N. C.; Li, H.; Koumbis, A. E.; Hughes, R.; Natarajan, S.; Jain, N. F.; Ramanjulu, J. M.; Bräse, S.; Solomon, M.
E. Chem. Eur. J. 1999, 5, 2602. Nicolaou, K. C.; Koumbis, A. E.; Takayanagi, M.; Natarajan, S.; Jain, N. F.; Bando, T.; Li,
H.; Hughes, R. Chem. Eur. J. 1999, 5, 2622. Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Bando, T.; Hughes, R.; Winssinger,
N.; Natarajan, S.; Koumbis, A. E. Chem. Eur. J. 1999, 5, 2648. Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Winssinger, N.;
Hughes, R.; Bando, T. Angew. Chem., Int. Ed. 1999, 38, 240. Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes, R.;