7760
S. P. Romeril et al. / Tetrahedron Letters 44 (2003) 7757–7761
Figure 2. Absolute configuration of pyrinodemin A central
core.
alkaloids, pyrinodemins B–D, have also been isolated
from the same sponge extract.23 Although their specific
rotations have not been reported, it is likely that
pyrinodemins B–D will have the same absolute stereo-
chemistry as pyrinodemin A.
Figure 1.
Barton’s deoxygenation of 22 with tris(trimethylsil-
yl)silane and AIBN afford (−)-3 in 69% yield.22 The H
1
and 13C NMR data of (−)-3 were consistent with racemic
3 we had previously prepared. Similarly the minor
compound 21 was transformed into thiocarbonate 23 in
92% yield and reduced to (+)-3 in 65% yield (Scheme 5).
Acknowledgements
We thank the States of Jersey Education Committee for
a scholarship (to S.P.R.), Professor Eric Jacobsen for his
technical advice on hydrolytic kinetic resolution and for
providing us a pre-print of Ref. 8.
The specific rotations of (−)-3 and (+)-3 are [h]2D4=−5.1
(c 1.0 CHCl3) and [h]2D3=+5.5 (c 0.9 CHCl3), respectively
{cf. literature value of natural pyrinodemin A [h]2D5=−9
(c 1.0 CHCl3)}. The enantiomeric excesses of (−)-3 and
(+)-3 were determined to be 83% and 95% respectively
References
1
by H NMR analysis using (R)-(−)-2,2,2-trifluoro-1-(9-
1. Tsuda, M.; Hirano, K.; Kubota, T.; Kobayashi, J. Tetra-
hedron Lett. 1999, 40, 4819–4820.
anthryl)ethanol as chiral shift reagent in C6D6.
2. Baldwin, J. E.; Romeril, S. P.; Lee, V.; Claridge, T. D. W.
Based on these findings we conclude that the absolute
stereochemistry of natural pyrinodemin A corresponds
to (−)-3 and is (15S,16S,20R) (Fig. 2). A group of similar
Org. Lett. 2001, 3, 1145–1148.
3. Snider, B. B.; Shi, B. Tetrahedron Lett. 2001, 42, 1639–
1642.
4. Romeril, S. P.; Lee, V.; Baldwin, J. E.; Claridge, T. D. W.
Tetrahedron Lett. 2002, 43, 327–329.
5. Pearson, W. H.; Fang, W.-k. J. Org. Chem. 2000, 65,
7158–7174.
6. Fujiwara, K.; Amano, A.; Tokiwano, T.; Murai, A.
Tetrahedron 2000, 56, 1065–1080.
7. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E.
N. Science 1997, 277, 936–938.
8. Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga,
M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen,
E. N. J. Am. Chem. Soc. 2002, 124, 1307–1315.
9. Evans, N. B.; Knight, D. W. Tetrahedron Lett. 2001, 42,
6947–6948.
10. Mukai, C.; Miyakoshi, N.; Hanaoka, M. J. Org. Chem.
2001, 66, 5875–5880.
11. Vloom, W. J.; van deb Bos, J. C.; Willard, N. P.; Koomen,
G.-J.; Pandit, U. K. Recl. Trav. Chim. Pays-Bas. 1991, 110,
414–419.
12. Poulain, S.; Noiret, N.; Nugier-Chauvin, C.; Patin, H.
Liebig Ann. 1997, 35–40.
13. Baldwin, J. E.; Spring, D. R.; Atkinson, C. E.; Lee, V.
Tetrahedron 1998, 44, 13655–13680.
14. Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout,
T. J. J. Am. Chem. Soc. 1990, 112, 7001–7031.
15. Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35,
8019–8022.
Scheme 5. Reagents and conditions: (i) PhOC(S)Cl, 4-(1-pyrro-
lidino)pyridine, DCM, 93% for 22, 92% for 23; (ii) (TMS)3SiH,
AIBN, PhH, 69% for (−)-3, 65% for (+)-3.