Acknowledgements
We would like to acknowledge Jeff Bozarth and Tracy
Bozarth for performing the FXa Ki and clotting assays
and William Ewing and Joanne Smallheer for
reviewing this manuscript.
References and notes
1. (a) Hyers, T. M. Arch. Intern. Med. 2003, 163, 759; (b) Stein, P. D.;
Grandison, D.; Hua, T. A. Postgrad. Med. J. 1994, 70 (Suppl. 1), S72; (c)
Hirsh, J.; Poller, L. Arch. Intern. Med. 1994, 154, 282.
2. (a) Adang, A. E. P.; Rewinkel, J. B. M. Drugs Future 2000, 25, 369;
(b) Rewinkel, J. B. M.; Adang, A. E. P. Curr. Pharm. Des. 1999, 5, 1043;
(c) Samama, M. M.; Gerotziafas, G. T. Thromb. Res. 2003, 109, 1.
3. (a) Hauel, N. H.; Nar, H.; Priepke, H.; Ries, U.; Stassen, J. M.; Wienen,
J. Med. Chem. 2002, 45, 1757. (b) Ieko, M. Curr. Opin. Investig. Drugs
2007, 8 758. (c) Van Ryn, J.; Stangier, J.; Haertter, S.; Liesenfeld, K. H.;
Wienen, W.; Feuring, M. Thromb. Haemost. 2010, 103, 1116. (d)
Hankey, G. J.; Eikelboom, Circulation 2011, 123, 1436.
Figure 2: Overlay models of hydroxymethylene 1 (orange)
cyclopropylamino 4b (yellow), and apixaban (blue).
Figure 2 shows a CADD overlay of compound 1 (FXa
Ki = 0.66 nM), 4b (FXa Ki = 0.05 nM), and apixaban
(FXa Ki = 0.08 nM) in human FXa. In general, the
bound orientation for these analogs is similar to that
seen for apixaban. In the P4 region the
hydroxymethylene moiety of 1 adopts a perpendicular
configuration in the S4 pocket and does not have the
same stacking arrangement that the phenyl lactam P4
group of apixaban has with the S4 residues: Phe174,
Tyr99, and Trp215. This configuration, in part, may
explain the five-fold decrease in binding affinity. The
basic P4 substituents with ring appendages such as the
cyclopropyl group in 4b appear to elicit lipophilic
interactions with the backbone Glu97 residue. The
combination of a charge interaction coupled with the
lipophilic interactions of the substituents afford a
greater degree of FXa binding affinity. The hydroxyl
group of analog 1 interacts weakly with the carbonyl of
Lys96 and is not as strong as that observed with basic
P4 groups. In part, this could also explain some loss in
binding affinity of the less charged P4 group relative to
the charged basic P4 groups.
4. (a) Perzborn, E.; Roehring. S.; Straub, A.; Kubitza, D.; Misselwitz, F.
Nat. Rev. Drug Discov. 2011, 10, 61. (b) Straub, A.; Roehrig, S.; Hillisch,
A. Curr. Top. Med. Chem. 2010, 10, 257. (c) Misselwitz, F.; Berkowitz,
S. D.; Perzborn, E. Ann. N. Y. Acad. Sci. 2011, 1222, 64. (d) Lassen, M.
R.; Ageno, W.; Borris, L. C.; Lieberman, J. R.; Rosencher, N.; Bandel, T.
J.; Misselwitz, F.; Turpie, A. G. G. N. Eng. J. Med. 2008, 358, 2776.
5. (a) Pinto, D. J. P.; Orwat, M. J.; Koch, S.; Rossi, K. A.; Alexander, R.
S.; Smallwood, A.; Wong, P. C.; Rendina, A. R.; Luettgen, J. M.; Knabb,
R. M.; He, K.; Xin, B.; Wexler, R. R.; Lam, P. Y. S. J. Med. Chem. 2007,
50, 5339; (b) He, K.; Luettgen, J. M.; Zhang, D.; He, B.; Grace, J. E. Jr.;
Xin, B.; Pinto, D. J. P.; Wong, P. C.; Knabb, R. M.; Lam, P. Y. S.;
Wexler, R. R.; Grossman, S. J. Eur. J. Drug Metab. Pharm. 2011, 36 (3),
129; (c) Pinto, D. J. P.; Smallheer, J. M.; Cheney, D. L.; Knabb, R., M.;
Wexler, R. R. J. Med. Chem. 2010, 53, 6243; (d) Pinto, D. J. P.; Qiao, J.
X.; Knabb, R. M. Expert Opin. Ther. Patents 2012, 22, 645.
6. Furugohri, T.; Isobe, K., Honda, Y., Kamisato-Matsumoto, C.;
Sugiyama, N.; Nagahara, T.; Morishima, Y.; Shibano, T. J. Thromb.
Haemost. 2008, 6,1542.
7. Nutescu, E. Am. J. Health-Syst. Pharm. 2012, 69 (13) 1113
8. (a) Pinto, D. J. P.; Orwat, M. J.; Wang, S.; Fevig, J. M.; Quan, M. L.;
Amparo, E.; Cacciola, J.; Rossi, K. A.; Alexander, R. S.; Smallwood, A.
M.; Luettgen, J. M.; Liang, L.; Aunst, B. J.; Wright, M. R.; Knabb, R. M.;
Wong, P. C.; Wexler, R. R.; Lam, P. Y. S. J. Med. Chem. 2001, 44, 566;
(b) Wong, P. C.; Quan, M. L.; Crain, E. J.; Watson, C. A.; Wexler, R. R.;
Knabb, R. M. J. Pharmacol. Exp. Ther. 2000, 292, 351.
9. (a) Quan, M. L.; Lam, P. Y. S ; Han, Q.; Pinto, D. J. P. ; He, M.; Li, R.;
Ellis, C. D.; Clark, C. G.; Teleha, C. A.; Sun, J. H.; Alexander, R. S.; Bai,
S. A.; Luettgen, J. M.; Knabb, R. M.; Wong, P. C.; Wexler, R. R.; J. Med.
Chem., 2005, 48, 1729; (b) Wong, P. C.; Crain, E. J.; Watson, C. A.;
Wexler, R. R.; Lam, P. Y. S.; Quan, M. L.; Knabb, R. M. J. Thromb.
Thrombolysis 2007,24:43.
10. (a) Qiao, J. X.; Cheney, D. L.; Alexander, R. S.; Smallwood, A. M.;
King, S. R.; He, K.; Rendina, A. R.; Luettgen, J. M.; Knabb, R. M.;
Wexler, R. R; Lam, P. Y. S. Bioorg. Med. Chem. Lett. 2008, 18, 4118; (b)
Qiao, J. X.; King, S. R.; He, K.; Wong, P. C.; Rendina, A. R.; Luettgen, J.
M.; Xin, B.; Knabb, R. M.; Wexler, R. R; Lam, P. Y. S. Bioorg. Med.
Chem. Lett 2009, 19, 462.
11. Luo, F.; Jeevanandam, A. Tet. Lett. 1998, 39, 9455.
12. Qiao, J. X.; Pinto, D. P.; Orwat, M. J.; Han, W.; Friedrich, S. R. U.S.
Patent 7,312,214, 2007.
In summary, structural diversity at the P4 position was
successfully incorporated using the pyrazole scaffold of
apixaban. Novel tertiary substituted P4 moieties were
identified which demonstrated potent inhibition of FXa
and with good translation into the clotting activity. In
general, basic P4 moieties provided enhanced FXa
binding affinities compared to neutral P4 analogs. Good
oral bioavailability was observed for several of these
analogs, however, their overall pharmacokinetic
properties were moderate to poor (moderate Cl > 1
L/Kg/h and high Vdss > 5 L/Kg). The neutral hydroxy
methyl analog 1 and methylsulfone analog 19 provided
the best balance of FXa affinity, clotting activity, and
good dog pharmacokinetics in terms of low clearance,
low volume of distribution, moderate half life and oral
bioavailability. However, these analogs did not
positively differentiate from apixaban and were not
considered for further evaluation.