A. J. Boydston et al. / Tetrahedron Letters 47 (2006) 5123–5125
5125
5. (a) Paetzold, F.; Niclas, H. J.; Foerster, H. J. J. Prakt.
Chem. 1986, 328, 5; (b) Adams, R.; Schowalter, K. A.
J. Am. Chem. Soc. 1952, 74, 2597; (c) Ruggli, P.;
Buchmeier, F. Helv. Chim. Acta 1945, 28, 850.
672.5134. Azophenine 1e: 1H NMR (CDCl3): d 8.13 (s,
2H), 7.03 (s, 2H), 6.78 (br, 8H), 6.31 (s, 2H), 1.17 (s, 72H);
13C NMR (CDCl3): d 151.4, 117.6, 90.7, 34.8, 31.4; HRMS:
[M+1]+ calcd for C62H88N4, 889.7009. Found: 889.7089.
16. Crystal data for 1b: C34H32N4O4–2C4H8O, M = 704.84,
triclinic, P1, a = 12.5090(8), b = 13.3300(9), c =
´ ˇ
6. (a) Frantz, S.; Rall, J.; Hartenback, I.; Scheid, T.; Zalis, S.;
Kaim, W. Chem. Eur. J. 2004, 10, 149; (b) Siri, O.;
Braunstein, P. Chem. Commun. 2002, 208; (c) Rall, J.;
˚
14.2730(11) A, a = 64.179(3), b = 89.750(4), c = 64.058(5)ꢁ,
3
V = 1874.8(2) A , Z = 2, Dc = 1.249 g cmꢀ3, l = 0.084
˚
Stange, A. F.; Hubler, K.; Kaim, W. Angew. Chem., Int.
¨
mmꢀ1, F(000) = 752, k (Mo Ka) = 0.71073 A, large red
˚
Ed. 1998, 37, 2681.
7. (a) Elhabiri, M.; Siri, O.; Sornosa-Tent, A.; Albrecht-
Gary, A.-M.; Braunstein, P. Chem. Eur. J. 2004, 10, 134;
prisms, crystal size 0.33 · 0.30 · 0.25 mm, 10820 reflections
measured (Rint = 0.0499), 6570 unique, R1 = 0.1268 for
I > 2r(I) and 0.2564 for all data. There were two molecules
of THF in the asymmetric unit, one of which was found to
be disordered and could not be adequately modeled. Key
bond lengths (A) and angles (ꢁ): N1–C1, 1.301(5); N2–C2,
1.376(5); C1–C2, 1.493(6); C1–C3, 1.431(6); C2–C3,
1.340(6); C4–N1–C1–C2, 176.1(4). Crystal data for 7b:
(C36H32N4O4) 2Cl–4C2H6SO, M = 968.07, triclinic, P1,
´
(b) Siri, O.; Braunstein, P.; Rohmer, M.-M.; Benard, M.;
Welter, R. J. Am. Chem. Soc. 2003, 125, 13793; (c) Rumpel,
H.; Limbach, H.-H. J. Am. Chem. Soc. 1989, 111, 5429.
8. Haas, Y.; Zilberg, S. J. Am. Chem. Soc. 2004, 126, 8991.
9. The equilibrium between the ortho- and para-quinoid
tautomers has been previously shown to favor the latter.6
10. (a) Yamashita, M.; Goto, K.; Kawashima, T. J. Am.
Chem. Soc. 2005, 127, 7294; (b) Bo¨hler, C.; Stein, D.;
˚
˚
a = 8.2689(2), b = 11.4843(2), c = 13.3347(3) A, a =
3
˚
Donati, N.; Grutzmacher, H. New J. Chem. 2002, 26,
112.090(1), b = 96.690(1), c = 90.029(1)ꢁ, V = 1164.00(4) A ,
¨
1291; (c) Niehus, M.; Erker, G.; Kehr, G.; Schwab, P.;
Fro¨hlich, R.; Blacque, O.; Berke, H. Organometallics 2002,
21, 2905; (d) Jafarpour, L.; Stevens, E. D.; Nolan, S. P.
J. Organomet. Chem. 2000, 606, 49.
Z = 1, Dc = 1.381 g cmꢀ3, l = 0.375 mmꢀ1, F(000) = 510, k
˚
(Mo Ka) = 0.71073 A, colorless prisms, crystal size
0.49 · 0.31 · 0.20 mm, 7435 reflections measured (Rint
=
0.0162), 5229 unique, R1 = 0.0363 for I > 2r(I) and 0.0460
for all data. The data were collected at 153(2) K using an
Oxford Cryostream low temperature device. The struc-
tures were solved by direct methods and refined by full-
matrix least-squares on F2 with anisotropic displacement
parameters for the non-H atoms using SHELXL-97 (Sheld-
rick, G. M. University of Gottingen, Germany, 1994).
Data for these structures have been deposited with the
Cambridge Crystallographic Data Centre (12 Union
Road, Cambridge CB2 1EZ, UK) as CCDC 603509 (1b)
and 603510 (7b).
11. (a) Donia, R. A.; Shotton, J. A.; Bentz, L. O.; Smith, G. E.
P. J. Org. Chem. 1949, 14, 952; (b) Bildstein, B.; Malaun,
M.; Kopacka, H.; Wurst, K.; Mitterbock, M.; Ongania,
K.-H.; Opromolla, G.; Zanello, P. Organometallics 1999,
18, 4325.
12. Attempts at direct conversion of 2,5-diamino-1,4-benzo-
quinonediimines to their respective benzobis(imidazolium)
salts using mixtures of electrophiles (e.g., equimolar
amounts of HC(OEt)3 and paraformaldehyde under
equilibrating conditions) were met with limited success.
13. Schwarz, D. E.; Cameron, T. M.; Hay, P. J.; Scott, B. L.;
Tumas, W.; Thorn, D. L. Chem. Commun. 2005, 5919; For
a related example, see: Montgrain, F.; Ramos, S. M.;
Wuest, J. D. J. Org. Chem. 1988, 53, 1489.
17. General procedure for preparing compounds 7: A 50 mL
flask was charged 1 (0.5 mmol), PhCH3 (20 mL), parafor-
maldehyde (1.2 mmol), and concd HCl (1 drop). After
stirring the mixture at 110 ꢁC for 2–6 h, the temperature
was reduced to 50 ꢁC and i-PrOH (2 mL) was added to
facilitate partial dissolution of solids. Pd(OAc)2 (5 lmol)
was then added and slow evolution of gas followed. The
mixture was stirred for an additional 2–4 h and then
concentrated to afford crude product. Note: this protocol
was found to work equally well in other solvents (e.g.,
CH3CN, DMF, DMSO, and EtOH). Spectral data of 7a–d
were in accord with their previously reported values.1
Characterization data for 7e: 1H NMR (CDCl3): d 9.98
(br, 2H), 7.97 (br, 8H), 7.82 (br, 2H), 7.62 (s, 4H), 1.32 (s,
72H); 13C NMR (CDCl3): d 154.0, 144.7, 132.1, 125.5,
120.7, 114.9, 99.6, 35.5, 31.4; HRMS: [M]+ calcd for
C64H88N4, 912.7009. Found: 912.6983.
14. (a) Wenderski, T.; Light, K. M.; Ogrin, D.; Bott, S. G.;
Harlan, C. J. Tetrahedron Lett. 2004, 45, 6851; (b) Hillier,
A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.;
Nolan, S. P. J. Organomet. Chem. 2002, 653, 69; (c) Prim,
D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B. Tetra-
hedron 2002, 58, 2041; (d) Hartwig, J. F. Angew. Chem., Int.
Ed. 1998, 37, 2046; (e) Wolfe, J. P.; Wagaw, S.; Marcox,
J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.
15. General procedure for preparing compounds 1b–e: A
20 mL vial charged with 1,3-bis(2,6-diisopropylphenyl)-
imidazolium chloride (0.02 mmol), NaOt-Bu (0.02 mmol),
Pd(OAc)2 (0.01 mmol), and PhCH3 (5 mL). After
stirring the resulting mixture for 10 min, 1,2,4,5-tetra-
bromobenzene (1.00 mmol), amine (4.10 mmol), NaOt-Bu
(4.20 mmol), and PhCH3 (5 mL) were added. The resulting
mixture was sealed under an atmosphere of nitrogen and
stirred at 110 ꢁC for 8 h. After cooling to ambient
temperature, the resulting mixture was diluted with
hexanes and precipitated solids were collected by filtration.
Residual inorganic salts were removed by filtering CHCl3
solutions of the products. Characterization data for new
compounds: Azophenine 1b: 1H NMR (CDCl3): d 8.55 (s,
2H), 7.05–6.91 (m, 16H), 6.16 (s, 2H) 3.83 (s, 12H); 13C
NMR (CDCl3): d 150.4, 148.2, 134.4, 130.5, 121.0, 120.6,
119.1, 114.4, 111.3, 110.3, 93.1, 55.7, 55.5; HRMS: [M]+
calcd for C34H32N4O4, 560.2424. Found: 560.2428. Spec-
tral data of 1c was consistent with its previously reported1
18. Subjecting N,N0,N00,N000-tetra(p-chlorophenyl)-2,5-diamino-
1,4-benzoquinonediimine5a to the cyclization–oxidation
reaction sequence outlined in Scheme 2 afforded 1,3-
di(p-chlorophenyl)-5,6-di(p-chlorophenyl-amino)benzimid-
1
azolium chloride (95% yield): H NMR (CDCl3): d 10.14
(s, 1H), 7.97 (d, J = 9.2 Hz, 4H), 7.84 (d, J = 9.2 Hz, 4H),
7.49 (s, 8H), 7.13 (s, 2H), 5.95 (s, 2H).
19. It was also found that benzobis(imidazolium) salts 7 could
be prepared via a one-pot, reduction–cyclization reaction
sequence: Subjecting 1a–d independently to standard
hydrogenative conditions (10% Pd/C, 400 PSI H2) in
HC(OEt)3 for 16–24 h followed by addition of acid (HCl
or HBF4) at 60–110 ꢁC for 2–24 h afforded the respective
benzobis(imidazolium) salts 7a–d in 51–92% yields.
20. (a) Saravanakumar, S.; Oprea, A. I.; Kindermann, M. K.;
Jones, P. G.; Heinicke, J. Chem. Eur. J. 2006, 12, 3143; (b)
Hahn, F. E.; Jahnke, M. C.; Gomez-Benitez, V.; Morales-
Morales, D.; Pape, T. Organometallics 2005, 24, 6458.
1
value. Compound 1d: H NMR (CDCl3): d 6.69 (br, 2H),
5.77 (s, 2H), 2.10 (br, 12H), 1.97 (br, 24H), 1.68 (br, 24H);
13C NMR (CDCl3): d (ca 138), 92.2, 52.7, 42.6, 36.9, 29.8;
HRMS: [M]+ calcd for C46H64N4, 672.5131. Found: