2856
G. K. Friestad et al. / Tetrahedron: Asymmetry 14 (2003) 2853–2856
9. (a) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 122,
20. Hatanaka, M.; Ueda, I. Chem. Lett. 1991, 61–64.
21. Hydrazones were obtained as single CꢁN bond isomers
(>98:2).
8329–8330; (b) Friestad, G. K.; Qin, J. J. Am. Chem. Soc.
2001, 123, 9922–9923.
10. (a) Miyabe, H.; Ushiro, C.; Naito, T. J. Chem. Soc.,
Chem. Commun. 1997, 1789–1790; (b) Miyabe, H.; Fujii,
K.; Naito, T. Org. Lett. 1999, 1, 569–572; (c) Miyabe, H.;
Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T. J. Org.
Chem. 2000, 65, 176–185; (d) Ueda, M.; Miyabe, H.;
Teramachi, M.; Miyata, O.; Naito, T. J. Chem. Soc.,
Chem. Commun. 2003, 426–427.
11. (a) Bertrand, M. P.; Feray, L.; Nouguier, R.; Stella, L.
Synlett 1998, 780–782; (b) Bertrand, M. P.; Feray, L.;
Nouguier, R.; Perfetti, P. Synlett 1999, 1148–1150; (c)
Bertrand, M. P.; Coantic, S.; Feray, L.; Nouguier, R.;
Perfetti, P. Tetrahedron 2000, 56, 3951–3961; (d)
Bertrand, M.; Feray, L.; Gastaldi, S. Comptes Rend.
Acad. Sci. Paris, Chimie 2002, 5, 623–638.
22. The olefin configurations were assigned on the basis of
1D NOE data and vicinal coupling constants of 4d (E-4d:
J=15 Hz, Z-4d: J=9 Hz). For all compounds 4, the
olefinic vicinal coupling constants were either 15 Hz or 9
Hz, and olefin isomers were assigned by analogy to 4d.
23. For the configurational assignment of 5, see Ref. 13.
24. (a) Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron 1985,
41, 3925–3941; (b) Spellmeyer, D. C.; Houk, K. N. J.
Org. Chem. 1987, 52, 959–974.
25. The a-hydroxy- and a-silyloxy hydrazones without addi-
tional carbanion-stabilizing functionality are configura-
tionally stable under these conditions (>96% ee, Mosher
ester analysis). However, alcohol 1e, wherein the phenyl
group can promote enolization, suffered significant
racemization.
12. Friestad, G. K. Org. Lett. 1999, 1, 1499–1501.
13. Friestad, G. K.; Massari, S. E. Org. Lett. 2000, 2, 4237–
4240.
26. Bis-ethynylsilyl ether 7 was prepared from crotonalde-
hyde in three steps. Massari, S. E. Diastereoselective
Vinyl Addition to Chiral Hydrazones via Tandem Thiyl
Radical Addition and Silicon-Tethered Cyclization. M.S.
Thesis, University of Vermont, 2001.
14. Nishiyama, H.; Kitajima, T.; Matsumoto, M.; Itoh, K. J.
Org. Chem. 1984, 49, 2298–2300; Stork, G.; Kahn, M. J.
Am. Chem. Soc. 1985, 107, 500–501. Reviews of silicon
tethered reactions: Gauthier, D. R., Jr.; Zandi, K. S.;
Shea, K. J. Tetrahedron 1998, 54, 2289–2338; Fenster-
bank, L.; Malacria, M.; Sieburth, S. M. Synthesis 1997,
813–854; Fleming, I.; Barbero, A.; Walter, D. Chem. Rev.
1997, 97, 2063–2192; Bols, M.; Skrydstrup, T. Chem. Rev.
1995, 95, 1253–1277.
15. Reviews: Miyata, O.; Naito, T. Comptes Rend. Acad. Sci.
Paris, Chimie 2001, 4, 401–421; Naito, T. Heterocycles
1999, 50, 505–541. For selected recent examples, see:
Miyata, O.; Nakajima, E.; Naito, T. Chem. Pharm. Bull.
2001, 49, 213–224; Miyata, O.; Muroya, K.; Kobayashi,
T.; Yamanaka, R.; Kajisa, S.; Koide, J.; Naito, T. Tetra-
hedron 2002, 58, 4459–4479.
16. Alkynylsilanes have not been employed as silicon-teth-
ered radical precursors, though their use as acceptors is
known, see: Stork, G.; Suh, H. S.; Kim, G. J. Am. Chem.
Soc. 1991, 113, 7054–7056; Mazeas, D.; Skrydstrup, T.;
Doumeix, O.; Beau, J.-M. Angew. Chem., Intl. Ed. Engl.
1994, 33, 1383–1386. Xi, Z.; Rong, J.; Chattopadhyaya,
J. Tetrahedron 1994, 50, 5255–5272; Garg, N.; Hossain,
N.; Chattopadhyaya, J. Tetrahedron 1994, 50, 5273-5278.
Sukeda, M.; Ichikawa, S.; Matsuda, A.; Shuto, S. J. Org.
Chem. 2003, 68, 3465-3475.
27. Representative procedure: A solution of ethynylsilyl ether
3c (204 mg, 0.56 mmol) in cyclohexane (5.6 mL) was
deoxygenated (N2, via syringe needle) for ca. 10 min, then
heated to reflux. A solution of 2,2%-azobis(isobutyroni-
trile) (AIBN, 10 mg, 0.06 mmol) and thiophenol (0.080
mL, 0.78 mmol) in benzene (0.8 mL), was added via
syringe pump (0.34 mL/h). Additional portions of AIBN
(3×10 mg) were added in 3 h intervals until the reaction
was complete (as judged by TLC), then the cooled reac-
tion mixture was concentrated. The residue was dissolved
in THF (1 M) and treated with tetrabutylammonium
fluoride (1.5 mL, 1 M in THF, 1.5 mmol) at room
temperature for ca. 1 h. When complete (as judged by
TLC), the reaction was diluted with hexane, washed with
water, dried over Na2SO4, and concentrated. Flash chro-
matography (hexane/ethyl acetate) furnished the vinyl
sulfide 4c as a mixture of diastereomers (157 mg, 67%),
from which the major diastereomer (E)-anti-4c (120 mg,
51% yield) was isolated by radial chromatography (hex-
ane/ethyl acetate) as a pale yellow oil: [h]2D8=−12.0 (c
1.25, CHCl3); IR (film, CHCl3) 3447, 3060, 2955, 1588,
1495, 1272, 1071, 1025 cm−1 1H NMR (500 MHz,
;
CDCl3) l 7.31–7.22 (m, 9H), 7.14–7.11 (m, 4H), 7.05–
7.00 (m, 2H), 6.35 (d, J=15.1 Hz, 1H), 5.90 (dd, J=15.2,
8.9 Hz, 1H), 4.09 (s, 1H), 4.00–3.95 (m, 1H), 3.52 (dd,
J=8.9, 2.4 Hz, 1H), 2.35 (s, 1H), 1.80–1.72 (m, 1H), 1.45
(ddd, J=14.0, 9.3, 5.6 Hz, 1H), 1.12 (ddd, J=13.1, 8.1,
3.6 Hz, 1H), 0.92 (d, J=6.7 Hz, 3H), 0.89 (d, J=6.6 Hz,
3H); 13C NMR (125 MHz, CDCl3) l?147.96, 134.65,
129.96, 129.28, 129.08, 128.79, 127.70, 126.93, 122.72,
120.36, 68.70, 65.28, 41.85, 24.65, 23.34, 22.08; MS (CI)
m/z (relative intensity) 419 ([M+H]+, 80%), 164 (100%).
Anal. calcd for C26H30N2OS: C, 74.60; H, 7.22; N, 6.69.
Found: C, 74.32; H, 7.28; N, 6.43.
17. (a) Barton, T. J.; Lin, J.; Ijadi-Maghsoodi, S.; Power, M.
D.; Zhang, X.; Ma, Z.; Shimizu, H.; Gordon, M. S. J.
Am. Chem. Soc. 1995, 117, 11695–11703; (b) Matsumoto,
H.; Kato, T.; Matsubara, I.; Hoshino, Y.; Nagai, Y.
Chem. Lett. 1979, 1287–1290.
18. Structures of new compounds 3–8 are consistent with
combustion analyses and spectroscopic data (1H and 13C
NMR, IR, MS).
19. For other radical equivalents to Mannich-type reactions,
see: Miyabe, H.; Fujii, K.; Goto, T.; Naito, T. Org. Lett.
2000, 2, 4071–4074; Inokuchi, T.; Kawafuchi, H. Synlett
2001, 421–423.