evaluating the effect of the chalcogen in a structure selected, it
is desirable to have easy access to all three arylchalcogenide
analogues4 (sulfide, selenide, and telluride) starting from a
common precursor. Out of the many methods available for aryl-
chalcogen bond-formation, we thought the coupling of aryl
halides with thiolates, selenolates, and tellurolates would be
ideally suited for our purposes. However, unless the substitution
reaction is catalyzed or otherwise facilitated (e.g., by photolysis,5
electrolysis,6 metal-promoted electron transfer,7 or by formation
of a transition metal arene complex of the aryl halide8),
nucleophilic substitution can only be effected under forcing
conditions. Already in the 1980s, Migita and Cristau reported
Pd- and Ni-catalyzed cross-coupling of aryl bromides and
iodides with thiolates and selenolates.9 Although yields were
generally satisfying, long reaction times at elevated temperature
were often required for nonactivated aryl halides. More recently,
Itoh and Hartwig10 have reported improved palladium-based
catalyst systems for coupling of aryl halides and triflates with
thiols. For diaryl selenide synthesis, phenyl tributylstannyl
selenide, PhSeSnBu3, was found to function as an excellent
partner in the Pd- or Ni-catalyzed reaction with aryl halides
and triflates.11 Copper-based catalyst systems have proven
effective for the cross-coupling of aryl iodides with both thiols
and selenols.12 Methodology for diaryl telluride synthesis by
Microwave-Assisted Copper-Catalyzed
Preparation of Diaryl Chalcogenides
Sangit Kumar and Lars Engman*
Department of Biochemistry and Organic Chemistry, Box 576,
SE-751 23 Uppsala, Sweden
ReceiVed March 31, 2006
Diaryl chalcogenide synthesis employing diaryl dichalco-
genides and aryl halides as starting materials in the presence
of excess magnesium and a catalytic amount of CuI/bipyridyl
is significantly improved by microwave heating. Reaction
times can be reduced from 2 to 3 days to 6-8 h. Both aryl
bromides and aryl chlorides can be used as substrates in the
substitution reaction. The procedure is useful not only for
diaryl sulfide and diaryl selenide synthesis but also for the
preparation of unsymmetrical diaryl tellurides. Starting from
suitable aryl halides, the novel microwave-assisted procedure
was used for the facile preparation of novel chalcogen
analogues (PhS-, PhSe-, and PhTe-) of various antioxidants
(ethoxyquin and 3-pyridinol). Attempts to use dialkyl dichal-
cogenides for the coupling of alkylchalcogeno moieties to
aryl halides were only successful in the case of long-chain
(such as n-octyl) disulfides and diselenides.
(2) (a) Okamoto, Y., in Patai, S., Rappoport, Z., Eds. The Chemistry of
Organic Selenium and Tellurium Compounds; Wiley: Chichester, U.K.,
1986; Vol. 1, Chapter 10. (b) Hellberg, J.; Remonen, T.; Johansson, M.;
Ingana¨s, O.; Theander, M.; Engman, L.; Eriksson, P. Synth. Met. 1997, 84,
251. (c) Ando, T.; Kwon, T. S.; Kitagawa, A.; Tanemura, T.; Kondo, S.;
Kunisada, H.; Yuki, Y. Macromol. Chem. Phys. 1996, 197, 2803. (d) Takagi,
K.; Nishikawa, Y.; Kwon, T. S.; Kunisada, H.; Yuki, Y. Polym. J. 2000,
32, 970. (e) Stuhr-Hansen, N.; Beckers, E. H. A.; Engman, L.; Janssen, R.
A. J. Heteroat. Chem. 2005, 16, 656.
(3) (a) Andersson, C.-M.; Hallberg, A.; Brattsand, R.; Cotgreave, I. A.;
Engman, L.; Persson, J. Bioorg. Med. Chem. Lett. 1993, 3, 2553. (b)
Engman, L.; Stern, D.; Pelcman, M.; Andersson, C-M. J. Org. Chem. 1994,
59, 1973. (c) Vessman, K.; Ekstro¨m, M.; Berglund, M.; Andersson, C.-M.;
Engman L. J. Org. Chem. 1995, 60, 4461. (d) Kanda, T.; Engman, L.;
Cotgreave, I. A.; Powis, G. J. Org. Chem. 1999, 64, 8161. (e) McNaughton,
M.; Engman, L.; Birmingham, A.; Powis, G., Cotgreave, I. A. J. Med. Chem.
2004, 47, 233. (f) Shanks, D.; Amorati, R.; Fumo, M. G.; Pedulli, G. F.;
Valgimigli, L.; Engman, L. J. Org. Chem. 2006, 71, 1033.
(4) (a) Engman, L.; Stern, D.; Frisell, H.; Vessman, K.; Berglund, M.;
Ek, B.; Andersson, C.-M. Bioorg. Med. Chem. 1995, 3, 1255. (b)
Malmstro¨m, J.; Jonsson, M.; Cotgreave, I. A.; Hammarstro¨m, L.; Sjo¨din,
M.; Engman, L. J. Am. Chem. Soc. 2001, 123, 3434. (c) Shanks, D.; Al-
Maharik, N.; Malmstro¨m, J.; Engman, L.; Eriksson, P.; Stenberg, B.;
Reitberger, T. Polym. Degrad. Stab. 2003, 81, 261.
Introduction
Aryl chalcogenide structural motifs are commonly found in
a variety of molecules of biological/pharmaceutical1 and materi-
als2 interest. We study the antioxidative properties3 of organo-
sulfur, organoselenium, and organotellurium compounds with
the perspective to find compounds which could act in a catalytic
fashion to decompose both hydroperoxides (peroxide decompos-
ing antioxidants) and peroxyl radicals (chain-breaking donating
antioxidants). Because of their stability also at elevated tem-
peratures, aryl chalcogenides are often our target molecules. For
(5) Pierini, A. B.; Pene´nory, A. B.; Rossi, R. A. J. Org. Chem. 1984,
49, 486.
(6) Degrand, C.; Prest, R. J. Org. Chem. 1987, 52, 5229.
(7) Zhang, Y.; Guo, H. Heteroat. Chem. 2001, 12, 539.
(8) (a) Vasil’ev, A. A.; Engman, L.; Storm, J. P.; Anderson, C.-M.
Organometallics 1999, 18, 1318. (b) Smirnova, J.; Engman, L.; Andersson,
C.-M.; Malm, J. J. Organomet. Chem. 2005, 690, 1784 and references cited
therein.
(9) (a) Migita, T.; Shimizu, T.; Shiobara, J.; Kato, Y.; Kosugi, M. Bull.
Chem. Soc. Jpn. 1980, 53, 1385. (b) Cristau, H. J.; Chabaud, B.; Christol,
C. H. Synthesis 1981, 892. (c) Cristau, H. J.; Chabaud, B.; Labaudiniere,
R.; Christol, H. 1985, 4, 657.
(10) (a) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587. (b) Ferna´ndez-
Rodriges, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128,
2180.
(11) (a) Nishiyama, Y.; Tokunaga, K.; Sonoda, N. Org. Lett. 1999, 1,
1725. (b) Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P.
V. J. Organomet. Chem. 2000, 605, 96. (c) Beletskaya, I. P.; Sigeev, A. S.;
Peregudov, A. S.; Petrovskii, P. V. Russ. J. Org. Chem. 2001, 37, 1463.
(d) Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P. V.
Tetrahedron Lett. 2003, 44, 7039.
(1) See for example the following: (a) Kaldor, S. W.; Kalish, V. J.;
Davies II, J. F.; Shetty, B. V.; Fritz, J. E.; Appelt, K.; Burgess, J. A.;
Campanale, K. M.; Chirgadze, N. Y.; Clawson, D. K.; Dressman, B. A.;
Hatch, S. D.; Khalil, D. A.; Kosa, M. B.; Lubbehusen, P. P.; Muesing, M.
A.; Patick, A. K.; Reich, S. H.; Su, K. S.; Tatlock, J. H. J. Med. Chem.
1997, 40, 3979. (b) Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, R.;
DeVries, P.; Leitza, S.; Reilly, E. B.; Okasinski, G. F.; Fesik, S. W.; von
Geldern, T. W. J. Med. Chem. 2001, 44, 1202. (c) Liu, L.; Stelmach, J. E.;
Natarajan, S. R.; Chen, M.-H.; Singh, S. B.; Schwartz, C. D.; Fitzgerald,
C. E.; O’Keefe, S. J.; Zaller, D. M.; Schmatz, D. M.; Doherty, J. B. Bioorg.
Med. Chem. Lett. 2003, 13, 3979. (d) Parnham, M. J.; Graf, E. Prog. Drug
Res. 1991, 36, 9. (e) Goudgaon, N. M.; Naguib, F. N. M.; el Kouni, M. H.;
Schinazi, F. J. Med. Chem. 1993, 36, 4250. (f) Mugesh, G.; du Mont, W.-
W.; Sies, H. Chem. ReV. 2001, 101, 2125. (g) Zhang, S.-J.; Dong, J.-Q.;
Wang, Y.-G. Synth. Commun. 2003, 33, 1891.
10.1021/jo060690a CCC: $33.50 © 2006 American Chemical Society
Published on Web 06/17/2006
5400
J. Org. Chem. 2006, 71, 5400-5403