D. H. Ryu et al. / Bioorg. Med. Chem. Lett. 13 (2003) 901–903
903
Acknowledgements
This work was supported by the US Public Health Ser-
vice NIH Grant EY-12375.
References and Notes
1. (a) Woodcock, J.; Moazed, D.; Cannon, M.; Davies, J.;
Noller, H. F. EMBO J. 1991, 10, 3099. (b) Fourmy, D.;
Recht, M. I.; Blanchard, S. C.; Puglisi, J. D. Science 1996, 274,
1367.
2. Cundliffe, E.; Dahlberg, A. E.; Garret, R. A.; Moore, P. B.;
Schlessinger, D.; Warner, J. R. In The Ribosome: Structure,
Function & Evolution; Hill, W. E., Ed.; American Society for
Microbiology: Washington DC, 1990; p 479.
3. (a) Davies, J. Science 1994, 264, 375. (b) Daigle, D. M.;
Hughes, D. W.; Wright, G. D. Chem. Biol. 1999, 6, 99. (c)
Sucheck, S. J.; Wong, A. L.; Koeller, K. M.; Boehr, D. D.;
Draker, K.; Sears, P.; Wright, G. D.; Wong, C.-H. J. Am.
Chem. Soc. 2000, 122, 5230. (d) Haddad, J.; Kotra, L. P.;
Llano-Sotelo, B.; Kim, C.; Azucena, E. F.; Liu, M.; Vaku-
lenko, S. B.; Chow, C. S.; Mobashery, S. J. Am. Chem. Soc.
2002, 124, 3229.
Scheme 2. Synthesis of (+)-neamine 1, (ꢀ)-neamine ent-1 and their
positional isomers (2, 3, ent-2 and ent-3). Reagents and conditions: (a)
N-iodosuccinimide, silver trifluoromethanesulfonate, Et2O/CH2Cl2
(3:1), ꢀ20 ꢁC; (b) NaOMe, MeOH; (c) 1 N HCl, MeOH, 75 ꢁC; (d)
P(CH3)3, THF/0.1 N NaOH (9:1); (e) H2, 20% Pd(OH)2/C, AcOH/
H2O (1:1).
4. (a) Greenberg, W. A.; Priestley, E. S.; Sears, S. P.; Alper,
P. B.; Rosenbohm, C.; Hendrix, M.; Hung, S.-C.; Wong, C.-
H. J. Am. Chem. Soc. 1999, 121, 6527. (b) Nunns, C. L.;
Spence, L. A.; Slater, M. J.; Berrisford, D. J. Tetrahedron Lett.
1999, 40, 9341.
5. Ryu, D. H.; Litovchick, A.; Rando, R. R. Stereospecificity
of aminoglycoside-ribosomal interactions. Biochemistry 2002,
41, 10499.
6. (ꢀ)-Neamine ent-1 and ent-3, showed similar antibiotic
activity against both E. coli and neomycin/kanamycin resis-
tant E. coli, ref 5 and unpublished results.
7. Alper, P. B.; Hung, S.-C.; Wong, C.-H. Tetrahedron Lett.
1996, 34, 6029.
native conformations could explain the relative inhibi-
tory power of these antibiotics and also the low level of
stereospecificity observed.
In conclusion, the syntheses of (+)-neamine 1, (ꢀ)-
neamine ent-1 and their positional isomers 2, 3, ent-2
and ent-3 are reported. These isomers exhibit similar
inhibitory activities as shown using the translation
assay. We also proposed that these low level of stereo-
specificity could be due to possible alternative con-
formations that ent-1, ent-2 and ent-3 may adopt. These
results may serve as the basis for the preparation of
novel unnatural aminoglycosides.
8. Buskas, T.; Garegg, P. J.; Konradsson, P.; Maloisel, J.-L.
Tetrahedron: Asymmetry 1994, 5, 2187.
9. Lin, C.-H.; Sugai, T.; Haicomb, R. L.; Ichikawa, Y.; Wong,
C.-H. J. Am. Chem. Soc. 1992, 114, 10138.
10. Jahng, W. J.; Cheung, E.; Rando, R. R. Biochemistry
2002, 41, 6311.
11. Fourmy, D.; Recht, M. I.; Puglisi, J. D. J. Mol. Biol. 1998,
277, 347.
Supporting information available: Experimental proce-
dure for the preparation of 1, 2, 3, ent-1, ent-2, and ent-3,
their spectroscopic data, and in vitro translation assay.