E
S. Jung et al.
Letter
Synlett
Acknowledgment
sumably due to the steric hindrance around the phosphorus
atom. Therefore, a thermodynamically controlled product is
preferably obtained. For related examples see: (a) Nagaoka, H.;
Kishi, Y. Tetrahedron 1981, 37, 3873. (b) Boschelli, D.; Takemasa,
T.; Nishitani, Y.; Masamune, S. Tetrahedron Lett. 1985, 26, 5239.
(11) See references related to anisotropic effect of the sulfinyl group:
(a) Pritchard, J. G.; Lauterbur, P. C. J. Am. Chem. Soc. 1961, 83,
2105. (b) Tanaka, S.; Sugihara, Y.; Sakamoto, A.; Ishii, A.;
Nakayama, J. Heteroatom Chem. 2003, 14, 587; and references
cited therein.
This work was supported by a Grant-in-Aid for Specially Promoted
Research (No.23000006 and No.15K13690) from JSPS.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
(12) For related examples of the NMR analyses of tri- or tetrasubsti-
tuted α-iodovinyl sulfoxide, see: (a) Satoh, T.; Takano, K.; Ota,
H.; Someya, H.; Matsuda, K.; Koyama, M. Tetrahedron 1998, 54,
5557. (b) Fernández de la Pradilla, R.; Viso, A.; Castro, S.;
Fernández, J.; Manzano, P.; Tortosa, M. Tetrahedron 2004, 60,
8171; and references cited therein.
(13) One-pot iodination and HWE reaction was hinted by:
(a) Kozawa, Y.; Mori, M. J. Org. Chem. 2003, 68, 3064.
(b) Shibahara, S.; Fujino, M.; Tashiro, Y.; Okamoto, N.; Esumi, T.;
Takahashi, K.; Ishihara, J.; Hatakeyama, S. Synthesis 2009, 2935.
(14) This reaction is exothermic, therefore, the reaction was con-
ducted in water bath for the large-scale reaction.
(15) Typical Procedure of One-Pot Iodination–HWE Reaction
In a two-necked round-bottomed flask was placed LiCl (44.7
mg, 0.314 mmol), to which a solution of sulfinyl-phosphonate
3b (100 mg, 0.314 mmol) in MeCN (1 mL) and TBD (87.4 mg,
0.628 mmol) or DBU (94.0 μL, 0.628 mmol) was added succes-
sively at room temperature. The mixture was stirred, and I2
(solid, 79.7 mg, 0.314 mmol) was added in several portions. The
mixture turned into an orange color solution. After stirring for
10 min, a solution of benzaldehyde (9, 22.2 mg, 0.209 mmol) in
MeCN (1 mL) was added slowly, and the stirring was continued
for 5 min at room temperature. The reaction was quenched by
adding 10% Na2S2O3 aqueous solution, the products were
extracted with EtOAc (3×), and the combined organic extracts
were washed with brine, dried (Na2SO4), and concentrated in
vacuo. The residue was purified by flash column chromatogra-
phy (hexane–EtOAc = 2:1) to obtain 10 in 71% yield (Z/E = 95:5,
TBD) or 78% yield (Z/E = 77:23, DBU). Recrystallization (EtOAc–
hexane = 2:1) gave pure (Z)-10 as colorless needles.
References and Notes
(1) (a) Cardellicchio, C.; Fiandanese, V.; Naso, F.; Scilimati, A. Tetra-
hedron Lett. 1992, 33, 5121. (b) Satoh, T.; Hayashi, Y.;
Yamakawa, K. Bull. Chem. Soc. Jpn. 1993, 66, 1866. (c) Otten, P.
A.; Davies, H. M.; van der Gen, A. Tetrahedron Lett. 1995, 36, 781.
(d) Paley, R. S.; Weers, H. L.; Fernández, P. Tetrahedron Lett.
1995, 36, 3605. (e) Satoh, T.; Takano, K.; Someya, H.; Matsuda, K.
Tetrahedron Lett. 1995, 36, 7097. (f) Mikolajczyk, M.; Krysiak, J.
A.; Midura, W. H. Tetrahedron: Asymmetry 1996, 7, 3513.
(g) Paley, R. S.; de Dios, A.; Estroff, L. A.; Lafontaine, J. A.;
Montero, C.; McCulley, D. J.; Rubio, M. B.; Ventura, M. P.; Weers,
H. L. J. Org. Chem. 1997, 62, 6326. (h) Zhong, P.; Huang, X.; Ping-
Guo, M. Tetrahedron 2000, 56, 8921. (i) van Steenis, J. H.; Boer, P.
W. S.; van der Hoeven, H. A.; van der Gen, A. Eur. J. Org. Chem.
2001, 911. (j) Xu, Q.; Huang, X. Tetrahedron Lett. 2004, 45, 5657.
(2) (a) Satoh, T.; Musashi, J.; Kondo, A. Tetrahedron Lett. 2005, 46,
599. (b) Satoh, T.; Yamashita, H.; Musashi, J. Tetrahedron Lett.
2007, 48, 7295. (c) Satoh, T.; Awata, Y.; Ogata, S.; Sugiyama, S.;
Tanaka, M.; Tori, M. Tetrahedron Lett. 2009, 50, 1961.
(d) Kimura, T.; Nishimura, Y.; Ishida, N.; Momochi, H.;
Yamashita, H.; Satoh, T. Tetrahedron Lett. 2013, 54, 1049.
(3) (a) Tsuchihashi, G.; Mitamura, S.; Ogura, K. Tetrahedron Lett.
1976, 17, 855. (b) Simal, C.; Bates, R. H.; Ureña, M.; Giménez, I.;
Koutsou, C.; Infantes, L.; Fernández de la Pradilla, R.; Viso, A.
J. Org. Chem. 2015, 80, 7674; and references cited therein.
(4) Jung, S.; Kitajima, Y.; Ueda, Y.; Suzuki, K.; Ohmori, K. Synlett
2016, 27, in press; DOI: 10.1055/s-0035-1561937.
(5) Andersen, K. K. Tetrahedron Lett. 1962, 3, 93.
Analytical Data for (Z)-10: Rf = 0.74 (hexane–EtOAc = 2:3); mp
84–86 °C. 1H NMR (600 MHz, CDCl3): δ = 2.41 (s, 3 H), 7.31 (d, 2
H, J = 8.1 Hz), 7.41–7.42 (m, 3 H), 7.60 (d, 2 H, J = 8.1 Hz), 7.77
(dd, 2 H, J = 6.5, 2.8 Hz), 8.16 (s, 1 H). 13C NMR (150 MHz, CDCl3):
δ = 21.5, 110.3, 126.0, 128.4, 129.2, 129.9, 130.0, 134.1, 138.9,
139.8, 142.3. IR (neat): 3052, 3023, 2973, 2920, 2865, 2360,
2342, 1593, 1491, 1445, 1397, 1266, 1178, 1084, 1059, 925,
872, 808, 749, 692 cm–1. [α]D20 +22.3 (c 1.11, CHCl3). HRMS (ESI-
TOF): m/z calcd for C15H14IOS [M + H]+: 368.9805; found:
368.9807. Anal. Calcd for C15H13IOS: C, 48.93; H, 3.56; S, 8.71.
Found: C, 48.96; H, 3.53; S, 8.52.
(6) Mikolajczyk, M.; Midura, W.; Grzejszczak, S.; Zatorski, A.;
Chefczynska, A. J. Org. Chem. 1978, 43, 473.
(7) The iodination was quenched by adding H2O. Quenching by aq
10% Na2S2O3 gave only the starting material 3a,b, though the
full conversion of the starting material and generation of
desired product 4a,b was confirmed by TLC analysis.
(8) Aldehyde 5 was used for the optimization study in the context
of our study on modular synthesis of planar chiral carba-para-
cyclophanes. For the synthesis of 5: Claus R. E., Schreiber S. L.;
Org. Synth.; 1986, 64: 150; see also ref. 4.
(9) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.;
Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25,
2183.
(16) Attempt for the reaction with acetophenone also failed, result-
ing in the formation of many unidentified byproducts.
(17) (a) Gilman, H.; Eidt, S. H. J. Am. Chem. Soc. 1956, 78, 3848.
(b) Durst, T.; LeBelle, M. J.; Van den Elzen, R.; Tin, K. C. Can. J.
Chem. 1974, 52, 761.
(10) Use of a bulky phosphonate tends to increase the Z selectivity.
This fact suggests that formation of the oxaphosphetane inter-
mediate and/or elimination of the phosphate become slow pre-
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–E