᎐
pp. 167–202; ( f ) V. Farina, V. Krishnamurthy and V. J. Scott, The
Stille Reaction, Wiley, New York, 1998.
2 C. Amatore, A. Jutand and A. Suarez, J. Am. Chem. Soc., 1993, 115,
9531–9541; C. Mateo, D. J. Cardenas, C. Fernandez-Rivas and
A. M. Echavarren, Chem. Eur. J., 1996, 2, 1596–1606.
3 E. Negishi, T. Takahashi, S. Baba, D. E. Van Horn and N. Okukado,
J. Am. Chem. Soc., 1987, 109, 2393–2401.
measurements, PhC᎐CSnBu (77 µl, 0.22 mmol) was added to a
᎐
3
solution of 2b (14.2 mg, 0.02 mmol) in thf-d8 (0.5 ml). After
completion of the reaction, the 2d/2e molar ratio was estimated
by integration of the CHMe2 septets at 4.77 ppm (2d) and at
5.32 ppm (2e).
Synthesis and characterization of [Pd(ꢀ2-dmfu)(P–N)2] (1f, 2f)
in solution. The complexes 1f or 2f are formed almost quanti-
tatively in the reaction of [Pd(η2-dmfu)(P–N)] (1a or 2a) with
1 equivalent of P–N (1 or 2) in thf. For NMR measurements,
the complex 1a (11.6 mg, 0.018 mmol) or 2a (10.5 mg, 0.018
mmol) and the ligand 1 (7.1 mg, 0.018 mmol) or 2 (6.0 mg,
0.018 mmol) were dissolved in thf-d8 (0.6 cm3). For IR meas-
urements, the complex 1a (12.9 mg, 0.02 mmol) or 2a (11.6 mg,
0.02 mmol) and the ligand 1 (7.9 mg, 0.02 mmol) or 2 (6.6 mg,
0.02 mmol) were dissolved in thf (1 cm3).
4 (a) A. Gillie and J. K. Stille, J. Am. Chem. Soc., 1980, 102, 4933–
4941; (b) K. Tatsumi, R. Hoffmann, A. Yamamoto and J. K. Stille,
Bull. Chem. Soc. Jpn., 1981, 54, 1857–1867; (c) P. J. Stang, M. H.
Kowalski, M. D. Schiavelli and D. J. Longford, J. Am. Chem. Soc.,
1989, 111, 3347–3356; (d ) J. M. Brown and N. A. Cooley,
Organometallics, 1990, 9, 353–359; (e) V. Farina and B. Krishnan,
J. Am. Chem. Soc., 1991, 113, 9585–9595; ( f ) V. Farina, B.
Krishnan, D. R. Marshall and G. P. Roth, J. Org. Chem., 1993, 58,
5434–5444; (g) J. Louie and J. F. Hartwig, J. Am. Chem. Soc., 1995,
117, 11598–11599; (h) C. Amatore, E. Carré, A. Jutand, H. Tanaka,
Q. Ren and S. Torii, Chem. Eur. J., 1996, 2, 957–966; (i) C. Amatore,
G. Broeker, A. Jutand and F. Khalil, J. Am. Chem. Soc., 1997, 119,
5176–5185; (j) J. F. Hartwig, Angew. Chem., Int. Ed., 1998, 37,
2046–2067.
Complex 1f: νmax/cmϪ1 (C᎐O) 1690s, (C᎐N) 1614mw; δH 9.19
᎐
᎐
(2 H, d, 4J(PH) 3.0 Hz, N᎐CH), 4.21 (2 H, m, olefin CH), 3.90
᎐
5 A. L. Casado and P. Espinet, J. Am. Chem. Soc., 1998, 120,
8978–8995; A. L. Casado, P. Espinet and A. M. Gallego, J. Am.
Chem. Soc., 2000, 122, 11771–11782.
6 A. Ricci, F. Angelucci, M. Bassetti and C. Lo Sterzo, J. Am. Chem.
Soc., 2002, 124, 1060–1071.
7 C. Amatore, A. Bucaille, A. Fuxa, A. Jutand, G. Meyer and A. N.
Ntepe, Chem. Eur. J., 2001, 7, 2134–2142.
(6 H, s, OCH3); δP 21.3 (s).
Complex 2f: νmax/cmϪ1 (C᎐O) 1687s, (C᎐N) 1629m; δ 9.34
᎐
᎐
H
(2 H, d, 4J(PH) Hz, N᎐CH), 3.98 (2 H, m, olefin CH), 3.51 (2 H,
᎐
3
3
spt, J(HH) 6.2 Hz, CHMe2), 1.29 (6 H, d, J(HH) 6.2 Hz,
CH3), 0.95 (6 H, d, 3J(HH) 6.2 Hz, CH3); δP 19.7 (s).
8 J. A. Casares, P. Espinet and G. Salas, Chem. Eur. J., 2002, 8,
4844–4853.
9 W. J. Scott and J. K. Stille, J. Am. Chem. Soc., 1986, 108, 3033–3040.
10 N. Tamayo, A. M. Echavarren, M. C. Paredes, F. Farina and
P. Noheda, Tetrahedron Lett., 1990, 31, 5189–5192.
11 R. Sustmann, J. Lau and M. Zipp, Tetrahedron Lett., 1986, 27,
5207–5210; M. E. Wright and C. K. Lowe-Ma, Organometallics,
1990, 9, 347–352; R. van Asselt and C. J. Elsevier, Organometallics,
1992, 11, 1999–2001.
12 A. L. Casado, P. Espinet, A. M. Gallego and J. M. Martìnez-
Ilarduya, Chem. Commun., 2001, 339–340.
Catalytic experiments
Reaction 2 was carried out at 25 ЊC in thf under nitrogen, with
a palladium complex concentration of 1 × 10Ϫ2 mol dmϪ3
᎐
and with an initial complex/IC H CF -4/PhC᎐CSnBu molar
ratio of 1 : 20 : 20. The reaction progress was monitored by
IR spectroscopy (in the absorbance mode), following the
᎐
6
4
3
3
᎐
᎐
increasing intensity of the ν(C᎐C) band of PhC᎐CC H CF -4
᎐
᎐
6
4
3
at 2220 cmϪ1 and the concomitant decreasing intensity of the
ν(C᎐C) band of PhC᎐CSnBu at 2134 cmϪ1, the conversion at
᎐
᎐
᎐
᎐
3
13 E. Shirakawa and T. Hiyama, J. Organomet. Chem., 1999, 576,
different times being estimated from calibration curves. The
details of reaction 2 catalyzed by 1a are reported as an example.
169–178 and references therein.
14 A. Scrivanti, U. Matteoli, V. Beghetto, S. Antonaroli, R. Scarpelli
and B. Crociani, J. Mol. Catal. A, 2001, 170, 51–56.
15 S. Antonaroli and B. Crociani, J. Organomet. Chem., 1998, 560,
137–146.
16 A. Scrivanti, U. Matteoli, V. Beghetto, S. Antonaroli and B.
Crociani, Tetrahedron, 2002, 58, 6881–6886.
17 T. G. Appleton, H. C. Clark and L. E. Manzer, Coord. Chem. Rev.,
1973, 10, 335–422.
18 G. P. C. M. Dekker, A. Buijs, C. J. Elsevier, K. Vrieze, P. W. N. M.
van Leeuwen, W. J. J. Smeets, A. L. Spek, Y. F. Wang and
C. H. Stam, Organometallics, 1992, 11, 1937–1948; R. E. Rülke,
V. E. Kaasjager, P. Wehman, C. J. Elsevier, P. W. N. M. van Leeuwen,
K. Vrieze, J. Fraanje, K. Goubitz and A. L. Spek, Organometallics,
1996, 15, 3022–3031; L. Crociani, G. Bandoli, A. Dolmella,
M. Basato and B. Corain, Eur. J. Inorg. Chem., 1998, 1811–1820.
19 P. M. Maitlis, P. Espinet and M. J. H. Russell, in Comprehensive
Organometallic Chemistry, ed. G. Wilkinson, F. G. A. Stone and
E. W. Abel, Pergamon, Oxford, 1982, vol. 6, ch. 38.4, pp. 305.
3
᎐
The reactants, IC H CF -4 (0.151 cm , 1.0 mmol) and PhC᎐
᎐
6
4
3
CSnBu3 (0.370 cm3, 1.0 mmol), and the complex 1a (32.3 mg,
0.05 mmol) were dissolved in thf (5 cm3) under nitrogen in
a two-necked round-bottom flask, which was kept in a
thermostat at 25 ЊC. Samples of the reaction mixture were
taken at different times for IR spectra.
The cross-coupling of iodobenzene with PhC᎐CSnBu was
᎐
᎐
3
carried out in a jacketed glass reactor equipped with a reflux
condenser, a side arm with stopcock for freeze–thaw cycles and
with a threaded side port with rubber septum and cap for
syringe sampling. The details for run 1 of Table 1 are reported
as an example. The reactor was charged under argon with thf
3
᎐
(5 cm ), PhC᎐CSnBu (0.510 g, 1.3 mmol), iodobenzene
᎐
3
(0.270 g, 1.3 mmol) and the complex 1a (4.2 mg, 6.5 × 10Ϫ3
mmol). The reactor was then heated at 50 ЊC by circulating
a thermostatic fluid through the outer jacket. Samples of the
reaction mixture were taken at different times, cooled to
room temperature and analysed by GLC to determine substrate
conversion and product yield.
20 Alternatively, the products of the reaction of 2b with an excess of
᎐
PhC᎐CSnBu3 may be formulated either as an equilibrium mixture
᎐
2
᎐
of the two isomers [Pd(η -PhC᎐CSnBu3)(P–N)], resulting from
᎐
different orientations of the asymmetric alkyne relative to the P–N
ligand in an essentially planar structure of the type:
Acknowledgements
Financial support by Ministero Italiano dell’Istruzione,
2
᎐
dell’Università
e
della Ricerca Scientifica is gratefully
or as an equilibrium mixture of one isomer [Pd(η -PhC᎐CSnBu3)-
᎐
(P–N)] with the oxidative addition derivative 2d. In both cases, the
formation of 2a upon addition of dmfu would occur by
displacement of the coordinated alkyne. These equilibria, however,
acknowledged.
appear to be hardly influenced by the concentrations of
References and notes
᎐
PhC᎐CSnBu3 or ISnBu3. On the other hand, the IR spectra of the
᎐
᎐
1 (a) J. K. Stille, Angew. Chem., Int. Ed., 1986, 25, 508–524; (b) T. N.
Mitchell, Synthesis, 1992, 803–815; (c) V. Farina, in Comprehensive
Organometallic Chemistry II, ed. E. W. Abel, F. G. A. Stone and
G. Wilkinson, Pergamon, Oxford, 1995, vol. 12, ch. 3.4, pp. 161–240;
(d ) V. Farina and G. P. Roth, Adv. Met.-Org. Chem., 1996, 5, 1–53;
(e) T. N. Mitchell, in Metal-Catalyzed Cross-Coupling Reactions,
ed. F. Diederich and P. J. Stang, Wiley-VCH, Weinheim, 1998,
reaction mixture show no absorption attributable to a ν(C᎐C)
᎐
vibration of the η2-bound alkyne in the range 2000–1700 cmϪ1. For
structural and IR data of palladium(0) complexes with η2-bound
alkynes, see: P. M. Maitlis, P. Espinet and M. J. H. Russell, in
Comprehensive Organometallic Chemistry, ed. G. Wilkinson, F. G. A.
Stone and E. W. Abel, Pergamon, Oxford, 1982, vol. 6, ch. 38.5.2,
pp. 353–356.
D a l t o n T r a n s . , 2 0 0 3 , 2 1 9 4 – 2 2 0 2
2201