J. Bonjoch et al. / Tetrahedron Letters 44 (2003) 8387–8390
8389
9. Suzuki, H.; Yamazaki, C.; Kibayashi, C. Tetrahedron
Lett. 2001, 42, 3013–3015.
10. For this methodology in the synthesis of nitrogen hetero-
cycles, see: (a) Sole´, D.; Peidro´, E.; Bonjoch, J. Org. Lett.
2000, 2, 2225–2228; (b) Sole´, D.; Diaba, F.; Bonjoch, J. J.
Org. Chem. 2003, 68, 5746–5749.
11. For a seminal work in the carbocyclic series, see: (a)
Piers, E.; Marais, P. C. J. Org. Chem. 1990, 55, 3454–
3455; (b) Piers, E.; Renaud, J. J. Org. Chem. 1993, 58,
11–13.
12. For other examples of this Pd-catalyzed coupling process
in the indole alkaloid field, see: (a) Wang, T.; Cook, J.
Org. Lett. 2000, 2, 2057–2059; (b) Yu, J.; Wearing, X. Z.;
Cook, J. M. Tetrahedron Lett. 2003, 44, 543–547.
13. (a) Moffett, R. B. J. Am. Chem. Soc. 1957, 79, 3186–
3190; (b) Hill, R. K. J. Org. Chem. 1957, 22, 830–832.
14. For the use of this methodology, see: (a) Hill, R. K.;
Sawada, S.; Bock, M. G.; Greene, J. R. Heterocycles
1987, 25, 515–520; (b) Bryce, M. R.; Gardiner, J. M.;
Hursthouse, M. B.; Short, R. L. Tetrahedron Lett. 1987,
28, 577–580; (c) Bryce, M. R.; Gardiner, J. M. Tetra-
hedron 1987, 44, 599–612; (d) Gardiner, J. M.; Bryce, M.
R.; Bates, P. A.; Hursthouse, M. B. J. Org. Chem. 1990,
55, 1261–1266; (e) Hayashi, T.; Senda, T.; Ogasawara, J.
Am. Chem. Soc. 2000, 122, 10716–10717.
Figure 2. NMR (1H and 13C) data of compound 11b.
trol in the formation of the enolate that reacts with the
intermediate vinylpalladium species. The two stereoiso-
mers formed were separated and the relative stereo-
chemistry of compound 11b, elucidated by 2D NMR
spectra (COSY, HSQC, HMBC, NOESY), corre-
sponded to that of FR901483 (Fig. 2).22
In summary, we report a new method for the synthesis
of functionalized 7,10a-methanoperhydropyrrolo[1,2-a]-
azocines embodying the tricyclic core of FR901483,
consisting of Pd-promoted cyclization of vinyl bromides
with ketone enolates. Work is underway to achieve a
regiocontrolled process, install the side-chains and
obtain the oxidation level of the natural product.
15. All yields reported herein refer to isolated, pure materials,
1
which had H and 13C NMR, and elemental combustion
analysis or high-resolution MS characteristics in accor-
dance with the proposed structures. 13C NMR data (75
MHz, DEPT) for selected compounds of Scheme 1: (1).
22.5 (t), 35.2 (t), 35.5 (t), 37.2 (t), 38.6 (t), 52.5 (d), 54.7
(t), 55.4 (t), 57.8 (s), 112.6 (t), 142.0 (s), 210.8 (s). (2) 27.8
(t), 32.0 (t), 64.3 (t), 64.4 (t), 82.2 (d), 106.7 (s). (3) 28.2
(t), 30.8 (t), 31.2 (t), 34.7 (t), 51.6 (q), 64.1 (t), 64.2 (t),
89.3 (s), 106.9 (s), 172.0 (s). (4) 25.4 (t), 32.3 (t), 35.3 (t),
35.4 (t), 45.6 (t), 60.6 (s), 64.2 (t), 64.3 (t), 108.7 (s). (5)
21.1 (t), 31.8 (t), 34.2 (t), 38.9 (t), 50.7 (t), 56.7 (t), 61.8
(s), 116.6 (t), 133.1 (s), 211.1 (s).
Acknowledgements
This research was supported by the MCYT (Spain)
through Grant BQU2001-3551. Thanks are also due to
the DURSI (Catalonia) for Grant 2001SGR-00083.
G.P. was a recipient of a fellowship (MCYT, Spain).
16. Ono, N.; Kamimura, A.; Miyake, H.; Hamamoto, I.;
Kaji, A. J. Org. Chem. 1985, 50, 3692–3698.
17. Sawamura, M.; Nakayama, Y.; Tang, W.-M.; Ito, Y. J.
Org. Chem. 1996, 61, 9090–9096.
18. Umino, N.; Iwakuma, T.; Hoh, N. Tetrahedron Lett.
1976, 17, 763–766.
References
19. The NMR data of 5 showed the same pattern of chemical
shifts as other related 1-azaspiro[4.5]decan-8-one deriva-
tives in which the preferred conformation had been estab-
lished by 2D NMR experiments (noted in Ref. 1a). See
also: Fujimoto, R. A.; Boxer, J.; Jackson, R. H.; Simke,
J. P.; Neale, R. F.; Snowhill, E. W.; Barbaz, B. J.;
Williams, M.; Sills, M. A. J. Med. Chem. 1989, 32,
1259–1265.
1. For our previous studies in this field, see: (a) Bonjoch, J.;
Diaba, F.; Puigbo´, G.; Sole´, D.; Segarra, V.; Santamar´ıa,
L.; Beleta, J.; Ryder, H.; Palacios, J.-M. Bioorg. Med.
Chem. 1999, 7, 2891–2897; (b) Puigbo´, G.; Diaba, F.;
Bonjoch, J. Tetrahedron 2003, 59, 2657–2665.
2. Snider, B. B.; Lin, H. J. Am. Chem. Soc. 1999, 121,
7778–7786.
3. Scheffler, G.; Seike, H.; Sorensen, E. J. Angew. Chem.,
Int. Ed. 2000, 39, 4593–4596.
20. For intermolecular vinylation of ketone enolates, see:
,
Chieffi, A.; Kamikawa, K.; Ahman, J.; Fox, J. M.;
4. Ousmer, M.; Braun, N. A.; Bavoux, C.; Perrin, M.;
Ciufolini, M. A. J. Am. Chem. Soc. 2001, 123, 7534–7538.
5. Maeng, J.-H.; Funk, R. L. Org. Lett. 2001, 3, 1125–1128
(racemic synthesis).
6. Yamazaki, N.; Suzuki, H.; Kibayashi, C. J. Org. Chem.
1997, 62, 8280–8281.
7. Brummond, K. M.; Lu, J. Org. Lett. 2001, 3, 1347–1350.
8. Wardrop, D. J.; Zhang, W. Org. Lett. 2001, 3, 2353–
2356.
Buchwald, S. L. Org. Lett. 2001, 3, 1897–1900.
21. 13C NMR data (75 MHz, assignment aided by HSQC)
for selected compounds of Scheme 2: (6) 30.2 (t), 32.7 (t),
42.0 (t), 45.7 (t), 53.1 (s), 64.1 (t), 64.2 (t), 109.1 (s), 117.9
(t), 126.7 (d), 128.2 (2 d), 134.1 (d), 141.3 (s). (7, HSQC)
16.8 (C-3), 29.7 (C-10), 30.8 (C-6), 32.2 (C-9), 32.6 (C-7),
47.7 (C-4), 51.1 (CH2Ar), 61.5 (C-2), 63.1 (C-5), 64.2 and
64.3 (OCH2), 108.2 (C-8), 126.7 (p-Ar), 128.1 (o-, m-Ar),
140.0 (ipso-Ar). (8, HSQC) 25.0 (C-10), 28.4 (NMe), 30.9