2448
J. Poldy et al. / Tetrahedron Letters 49 (2008) 2446–2449
We are grateful to J. Allen and G. Lockhart of the ANU
mass spectrometry facility.
Supplementary data
Experimental procedures and characterization data for
1
compounds 1–5; H, 13C NMR spectra and GC EI-MS
of chiloglottone (5a) are available. Supplementary data
associated with this article can be found, in the online
19.00
20.00
21.00
22.00
23.00
Fig. 2. GC FID (top) and GC EAD (bottom) of chiloglottone (5a).
References and notes
1. Jersa´kova´, J.; Johnson, S. D.; Kindlmann, P. Biol. Rev. 2006, 81, 219–
235.
2. Schiestl, F. P. Naturwissenschaften 2005, 92, 255–264.
3. Schiestl, F. P.; Ayasse, M. Plant Syst. Evol. 2002, 234, 111–119.
4. Ayasse, M.; Paxton, R. J.; Tengo¨, J. Annu. Rev. Entomol. 2001, 46,
31–78.
5. Bower, C. C. Aust. J. Bot. 1996, 44, 15–33.
6. Mant, J. G.; Schiestl, F. P.; Peakall, R.; Weston, P. H. Evolution 2002,
56, 888–898.
to 48% over nine steps. Reaction mixtures were assessed by
GC MS to determine the extent and efficiency of the cycli-
zations. Two compounds for which cyclization proved
most challenging exhibited a 2-isopropyl substituent (5e,
5f). Despite more forcing conditions and longer reaction
times low yields of the desired products were returned
along with starting material.
The mono and 2,5-dialkylated 1,3-cyclohexanediones
generated using this divergent methodology represent struc-
tural isomers (5c, 5d, 5f) and smaller homologs (5b, 5e) of
the confirmed natural product 5a. Chiloglottone (5a) pro-
duced the expected electroantennographic response
(EAD) on freshly mounted N. cryptoides antennae (Fig. 2)
and field studies confirmed its attractive nature toward male
wasps. Interestingly, when 5b–f were evaluated employing
the EAD assay we also observed electroantennographic
responses comparable to those achieved with the naturally
occurring pheromone 5a. Although this in vitro activity is
not necessarily sufficient to confer a behavioral effect in field
trials, it supports the notion that diverse 2,5-dialkylated 1,3-
cyclohexanediones could represent sex attractants, which
may yet be detected in related taxa.
In summary, we have demonstrated a facile and versatile
method for synthesizing mono and 2,5-dialkylated 1,3-
cyclohexanediones that proceeded in good to excellent
yields. The protocol is applicable to a range of alkyl halides
to impart various 2- and 5-alkyl substituents. Moreover,
the glutaric acid derivatives represent stable and conve-
nient intermediates that enable rapid divergence to dialky-
lated analogs. The availability of a synthetic library of
analogs provides a practical tool with which to probe the
behavioral activity of the pheromones, and anticipates
potential natural products which may yet be encountered.
Efforts are currently directed at adapting the synthesis to
further broaden the existing library and encapsulate puta-
tive pheromones and will be reported as part of a full
paper.
7. Schiestl, F. P.; Peakall, R.; Mant, J. G.; Ibarra, F.; Schulz, C.;
Franke, S.; Francke, W. Science 2003, 302, 437–438.
8. Schiestl, F. P.; Peakall, R. Funct. Ecol. 2005, 19, 674–680.
9. (a) Chilmonczyk, Z.; Sienicki, Ł.; Łozowicka, B.; Lisowska-Kuz´micz,
´
M.; Jonczyk, A.; Aboul-Enein, H. Il Farmaco 2005, 60, 439–443 (Pr);
(b) Cahiez, G.; Alami, M. Tetrahedron 1989, 13, 4163–4176 (iPr, Et);
(c) Necˇas, D.; Tursky´, M.; Kotora, M. J. Am. Chem. Soc. 2004, 126,
10222–10223 (Me).
10. (a) Shintani, R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 1057–
1059 (Pr); (b) Zhang, F.; Peng, L.; Zhang, T.; Mei, M.; Liu, H.; Li, Y.
Synth. Commun. 2003, 33, 3761–3770 (iPr); (c) Gaucher, A.; Ollivier,
J.; Marguerite, J.; Paugam, R.; Salaun, J. Can. J. Chem. 1994, 72,
¨
1312–1327 (Et).
11. Becker, J. Y.; Koch, T. A. Electrochim. Acta 1994, 39, 2067–2071 (Et).
12. Irwin, A. J.; Jones, J. B. J. Am. Chem. Soc. 1977, 99, 556–561 (iPr).
13. Theisen, P. D.; Heathcock, C. H. J. Org. Chem. 1993, 58, 142–146 (Et,
iPr).
14. Blackburne, I. D.; Park, R. J.; Sutherland, M. D. Aust. J. Chem. 1971,
24, 995–1007.
15. Cason, J. J. Org. Chem. 1948, 13, 227–238.
16. Cason, J. J. Am. Chem. Soc. 1946, 68, 2078–2081.
17. Saeed, A. Monatsh. Chem. 2003, 134, 457–463.
18. Hendrickson, J. B.; DeCapite, P. M. J. Org. Chem. 1985, 50, 2112–
2115.
19. Characterization data for selected compounds: Compound 3 (R0 = Pr):
1H NMR (300 MHz, CDCl3) d 2.87 (2H, dd, 2J = 17.1, 3J = 4.5,
H-3a, 5a), 2.41 (2H, dd, 2J = 17.1, 3J = 10.3, H-3b, 5b), 2.16 (1H, m,
H-4), 1.39–1.37 (4H, m, CH2-10, CH2-20), 0.92 (3H, m, CH3-30); 13C
NMR (75 MHz, CDCl3) d 166.5 (C, C-2, 6), 36.6 (CH2, C-10), 36.0
(CH2, C-3, 5), 28.4 (CH, C-4), 19.5 (CH2, C-20), 13.7 (CH3, C-30); EI-
MS m/z (%): 157 (52, [M+H]+), 97 (40), 84 (79), 70 (67), 69 (66), 56
(94), 55 (81), 43 (99), 42 (100). 3-Propyl-5-oxooctanoic acid: IR mmax
3050, 2960, 2934, 2875, 1700 cmꢀ1 1H NMR (300 MHz, CDCl3) d
;
11.1 (1H, br, s, 1-CO2H) 2.46–2.24 (7H, m, CH2-2, CH2-4, CH2-6,
H-3), 1.57 (2H, tq, 3J = 7.4, 3J = 7.4, CH2-7), 1.39–1.25 (4H, m, CH2-
10, CH2-20), 0.88 (6H, m, CH3-8, CH3-30); 13C NMR (75 MHz,
CDCl3) d 210.6 (C, C-5), 178.8 (C, C-1), 46.6, 45.1 (CH2, C-4, C-6),
38.2 (CH2, C-2), 36.3 (CH2, C-10), 30.4 (CH, C-3), 19.8 (CH2, C-20),
17.1 (CH2, C-7), 14.0, 13.7 (CH3, C-8, C-30); GC EI-MS m/z (%): 200
(<1, [M]+ꢁ), 182 (2), 157 (26), 129 (14), 111 (19), 97 (20), 87 (37), 83
(37), 71 (85), 69 (43), 55 (49), 43 (100); HREI-MS: found 200.1413
(calculated for C11H20O3 200.1412). Compound 4 (R0 = Pr, R00 = Et):
Acknowledgments
This work was supported by an ARC Discovery Project
(DP0451374) from the Australian Research Council. J.P.
thanks the ANU for an Australian Postgraduate Award.
IR mmax 2959, 2934, 2874, 1738, 1713 cmꢀ1 1H NMR (300 MHz,
;