Effect of Global Compaction on Folded Dendrimers
A R T I C L E S
global cooperativity was low when the collapse transition was
driven only by nonspecific, long-range interactions. Neverthe-
less, the importance of both short- and long-range interactions
in stabilizing the folded state of a protein can be inferred from
the observation that isolated R-helices are rarely stable in water9
and that protein fragments often exhibit different conformational
properties in the absence of the tertiary structure of the intact
protein.10 There also is a good correlation between the relative
decrease in hydrodynamic volume and the increase in secondary
structure content among proteins in the literature.3b,11 Similarly,
the hydrophobic interiors of proteins, in their native state,
maintain an extremely high packing density of side chains
similar to the packing found in organic solids.12 This efficient
filling of internal space in a protein appears to be an important
determinant of protein stability13 and is thought to be a crucial
factor responsible for the remarkable thermal stability of
thermophilic proteins.14,15 Consequently, the organization of
elements of protein secondary structure on a template has
become an effective tool for inducing and stabilizing secondary
and tertiary structures of a variety of folding motifs.16
macromolecules in which multiple elements of secondary
structure can interact intramolecularly. Based on the studies
described above, the induction of secondary structural order in
dendrimeric macromolecules should be enhanced by the compact
structure of higher generations. However, in many dendrimer
systems, significant backfolding of the termini occurs, indicating
a certain lack of local conformational order in the dendrimer
structure.20 This internal flexibility appears to be responsible
for the difficulties experienced in efforts to develop three-
dimensional organization in these systems,21,22 and recent efforts
in our laboratory to compact polyaryl ether dendrimers in
aqueous media indicated that compaction alone was not a
sufficient criterion to induce secondary structure in flexible
dendrimers.24
Design Considerations
Recently, we described a series of dendrons whose local
conformational properties were restricted through the interven-
tion of intramolecular hydrogen-bonding and electrostatic
interactions present in the AB2 building block (Figure 1,
bottom).25 These dendrons adopt a specific, chiral helical
secondary structure that occurs throughout the internal and
peripheral regions and depends critically on the development
of intramolecular packing interactions at higher dendron genera-
tion (Figure 1, top). These nonbonded packing interactions
couple the motions and conformational preferences of each pair
of terminal groups, or helical fold, causing the highly dynamic
equilibrium interconverting the M and P helical conformations
shown below to shift toward a single helical sense.26
The highly branched and regularly repeating connectivity of
dendritic macromolecules creates a three-dimensional structure
that adopts an increasingly compact, globular shape at higher
generations,17,18 potentially mimicking the morphology of
globular proteins.19 Consequently, dendrimers would seem to
present an opportunity to approach the design and synthesis of
(5) (a) Chan, H. S.; Dill, K. A. Macromolecules 1989, 22, 4559. (b) Chan, H.
S.; Dill, K. A. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 6388. (c) Dill, K.
A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.;
Chan, H. S. Protein Sci. 1995, 4, 561. (d) Thomas, P. D.; Dill, K. A. Protein
Sci. 1993, 2, 2050. (e) Yue, K.; Dill, K. A. Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 146. (f) Go, N.; Taketomi, H. Proc. Natl. Acad. Sci. U.S.A. 1978,
75, 559.
(6) Fersht, A. R.; Shakhnovich, E. I. Curr. Biol. 1998, 8, R478.
(7) (a) Chou, J. J.; Shakhnovich, E. I. J. Phys. Chem. B 1999, 103, 2535. (b)
Go, N.; Taketomi, H. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 559. (c)
Gregoret, L. M.; Cohen, F. E. J. Mol. Biol. 1991, 219, 109. (d) Kolinski,
A.; Madziar, P. Biopolymers 1997, 42, 537. (e) Kolinski, A.; Skolnick, J.
Proteins: Struct., Funct., Genet. 1994, 18, 338.
(8) (a) Gast, K.; Chaffotte, A. F.; Zirwer, D.; Guillou, Y.; Mueller-Frohne,
M.; Cadieux, C.; Hodges, M.; Damaschun, G.; Goldberg, M. E. Protein
Sci. 1997, 6, 2578. (b) Mizuguchi, M.; Masaki, K.; Demura, M.; Nitta, K.
J. Mol. Biol. 2000, 298, 985. (c) Yee, D. P.; Chan, H. S.; Havel, T. F.;
Dill, K. A. J. Mol. Biol. 1994, 241, 557.
(9) (a) Chakrabartty, A.; Baldwin, R. L. AdV. Protein Chem. 1995, 46, 14. (b)
Chakrabartty, A.; Kortemme, T.; Baldwin, R. L. Protein Sci. 1994, 3, 843.
(c) Chakrabartty, A.; Schellman, J. A.; Baldwin, R. L. Nature 1991, 351,
586. (d) Rohl, C. A.; Chakrabartty, A.; Baldwin, R. L. Protein Sci. 1996,
5, 2623.
(10) Hyde, C. C.; Ahmed, S. A.; Padlan, E. A.; Miles, E. W.; Davies, D. R. J.
Biol. Chem. 1988, 263, 17857.
(11) (a) Gualfetti, P. J.; Bilsel, O.; Matthews, C. R. Protein Sci. 1999, 8, 1623.
(b) Gualfetti, P. J.; Iwakura, M.; Lee, J. C.; Kihara, H.; Bilsel, O.; Zitzewitz,
J. A.; Matthews, C. R. Biochemistry 1999, 38, 13367.
(12) (a) Fleming, P. J.; Richards, F. M. J. Mol. Biol. 2000, 299, 487. (b) Gualfetti,
P. J.; Iwakura, M.; Lee, J. C.; Kihara, H.; Bilsel, O.; Zitzewitz, J. A.;
Matthews, C. R. Biochemistry 1999, 38, 13367. (c) Liang, J.; Dill, K. A.
Biophys. J. 2001, 81, 751.
(13) (a) Gregoret, L. M.; Cohen, F. E. J. Mol. Biol. 1991, 219, 109. (b) Richards,
F. M. Cell. Mol. Life Sci. 1997, 53, 790. (c) Levitt, M.; Gerstein, M.; Huang,
E.; Subbiah, S.; Tsai, J. Annu. ReV. Biochem. 1997, 66, 549. (d) Jaenicke,
R.; Bohm, G. Curr. Opin. Struct. Biol. 1998, 8, 738. (e) Jaenicke, R. J.
Biotechnol. 2000, 79, 193. (f) Kussell, E.; Shimada, J.; Shakhnovich, E. I.
J. Mol. Biol. 2001, 311, 183.
(14) (a) Russell, R. J. M.; Taylor, G. L. Curr. Opin. Biotechnol. 1995, 6, 370.
(b) Jaenicke, R. Proc. Natl. Adad. Sci. U.S.A. 2000, 97, 2962. (c) Kumar,
S.; Nussinov, R. Cell. Mol. Life Sci. 2001, 58, 1216. (d) Perl, D.; Schmid,
F. X. ChemBioChem 2002, 3, 39.
(18) (a) Mansfield, M. L.; Klushin, L. I. J. Phys. Chem. 1992, 96, 3994. (b)
Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Frechet, J. M. J.; Hawker,
C. J.; Wooley, K. L. Macromolecules 1992, 25, 2401. (c) Cai, C.; Chen,
Z. Y. Macromolecules 1998, 31, 6393. (d) Scherrenberg, R.; Coussens,
B.; van Vliet, P.; Edouard, G.; Brackman, J.; de Brabander, E.; Mortensen,
K. Macromolecules 1998, 31, 456. (e) Ganazzoli, F.; La Ferla, R.; Terragni,
G. Macromolecules 2000, 33, 6611. (f) Jeong, M.; Mackay, M. E.; Vestberg,
R.; Hawker, C. J. Macromolecules 2001, 34, 4927. (g) Tande, B. M.;
Wagner, N. J.; Mackay, M. E.; Hawker, C. J.; Jeong, M. Macromolecules
2001, 34, 8580.
(19) Newkome, G. R.; Moorefield, C. N.; Vogtle, F. F. Dendritic Molecules:
Concepts, Syntheses, PerspectiVes; VCH: Weinheim, New York, 1996.
(20) (a) Epperson, J. D.; Ming, L.-J.; Baker, G. R.; Newkome, G. R. J. Am.
Chem. Soc. 2001, 123, 8583. (b) Epperson, J. D.; Ming, L.-J.; Woosley,
B. D.; Baker, G. R.; Newkome, G. R. Inorg. Chem. 1999, 38, 4498. (c)
Wooley, K. L.; Klug, C. A.; Tasaki, K.; Schaefer, J. J. Am. Chem. Soc.
1997, 119, 53.
(21) For some reviews of the conformational properties of chiral dendrimers,
see: (a) Ramagnoli, B.; Hayes, W. J. Mater. Chem. 2002, 12, 767. (b)
Seebach, D.; Rheiner, P. B.; Greiveldinger, G.; Butz, T.; Sellner, H. Top.
Curr. Chem. 1998, 197, 125. (c) Thomas, C. W.; Tor, Y. Chirality 1998,
10, 53. (d) Peerlings, H. W. I.; Meijer, E. W. Chem.-Eur. J. 1997, 3, 1563.
(22) Laufersweiler, M. J.; Rohde, J. M.; Chaumette, J.-L.; Sarazin, D.; Parquette,
J. R. J. Org. Chem. 2001, 66, 6440.
(23) For notable examples of the effect of dendrimer constitution on structure
and function, see: (a) Chasse, T. L.; Sachdeva, R.; Li, Q.; Li, Z.; Petrie,
R. J.; Gorman, C. B. J. Am. Chem. Soc. 2003, 125, 8250. (b) Harth, E. M.;
Hecht, S.; Helms, B.; Malmstrom, E. E.; Frechet, J. M. J.; Hawker, C. J.
J. Am. Chem. Soc. 2002, 124, 3926. (c) Jeong, M.; Mackay, M. E.; Vestberg,
R.; Hawker, C. J. Macromolecules 2001, 34, 4927. (d) Peerlings, H. W. I.;
Trimbach, D. C.; Meijer, E. W. Chem. Commun. 1998, 497. (e) Peng, Z.;
Pan, Y.; Xu, B.; Zhang, J. J. Am. Chem. Soc. 2000, 122, 6619. (f) Rosini,
C.; Superchi, S.; Peerlings, H. W. I.; Meijer, E. W. Eur. J. Org. Chem.
2000, 61.
(24) Weintraub, J. G.; Broxer, S.; Paul, N. M.; Parquette, J. R. Tetrahedron
2001, 57, 9393.
(15) (a) Mutter, M.; Tuchscherer, G. Cell. Mol. Life Sci. 1997, 53, 851. (b)
Ramachandran, S.; Udgaonkar, J. B. Biochemistry 1996, 35, 8776.
(16) For some reviews of templated assembled synthetic proteins (TASP), see:
(a) Mutter, M.; Dumy, P.; Garrouste, P.; Lehmann, C.; Mathieu, M.;
Peggion, C.; Peluso, S.; Razaname, A.; Tuchscherer, G. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 1482. (b) Tuchscherer, G.; Mutter, M. Pure Appl.
Chem. 1996, 68, 2153. (c) Tuchscherer, G.; Grell, D.; Mathieu, M.; Mutter,
M. J. Pept. Res. 1999, 54, 185.
(25) (a) Huang, B.; Parquette, J. R. Org. Lett. 2000, 2, 239. (b) Recker, J.;
Tomcik, D. J.; Parquette, J. R. J. Am. Chem. Soc. 2000, 122, 10298. (c)
Gandhi, P.; Huang, B.; Gallucci, J. C.; Parquette, J. R. Org. Lett. 2001, 3,
3129. (d) Huang, B.; Parquette, J. R. J. Am. Chem. Soc. 2001, 123, 2689.
(26) Although the barrier could not be measured for these dendrons, we have
recently measured a barrier of 12.3 kcal/mol in a related pyridine-2,6-
diamide system using NMR line-shape analysis. This barrier most likely
represents an upper limit for the dendrons and dendrimers described in
this manuscript. Preston, A. J.; Fraenkel, G.; Chow, A.; Gallucci, J. C.;
Parquette, J. R. J. Org. Chem. 2003, 68, 22.
(17) For a review, see: Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem.
ReV. 1999, 99, 1665.
9
J. AM. CHEM. SOC. VOL. 125, NO. 47, 2003 14519