Communication
ChemComm
X. Zhang, Y. X. Zhuang, Y. H. Xu and T. P. Loh, J. Am. Chem. Soc.,
2015, 137, 1341–1347.
4 (a) J. Tsuji, J. Kiji, S. Imamura and M. Morikawa, J. Am. Chem. Soc.,
1964, 86, 4350–4353; (b) J. Tsuji, H. Takahashi and M. Morikawa,
Tetrahedron Lett., 1965, 6, 4387–4388.
5 (a) B. M. Trost, Acc. Chem. Res., 1980, 13, 385–393; (b) B. M. Trost and
T. J. Fullerton, J. Am. Chem. Soc., 1973, 95, 292–294; (c) B. M. Trost
and D. L. Van Vranken, Chem. Rev., 1996, 96, 395–422.
6 (a) J. D. Weaver, A. Recio, III, A. J. Grenning and J. A. Tunge, Chem.
Rev., 2011, 111, 1846–1913; (b) N. A. Butt and W. Zhang, Chem. Soc.
Rev., 2015, 44, 7929–7967.
A followed by reductive elimination to produce the formal [5+2]
cycloaddition product 4a and regenerate Pd(0) species. Under
controllable conditions, the 7-membered ring product 4a could
further undergo oxidative addition with Pd(0) species to give
intermediate B, which is then captured by imine and delivers
the ten-membered palladacycle C. Subsequently, reductive elimi-
nation and intramolecular aza [3,3]-sigmatropic rearrangement
events take place to furnish the formal migration [2+3] cyclo-
addition product 3a with extrusion of formaldehyde.
7 (a) Y. Mao, X. Zhai, A. Khan, J. Cheng, X. Wu and Y. J. Zhang,
Tetrahedron Lett., 2016, 57, 3268–3271; (b) A. Khan, S. Khan, I. Khan,
C. Zhao, Y. Mao, Y. Chen and Y. J. Zhang, J. Am. Chem. Soc., 2017,
139, 10733–10741; (c) L. Yang, A. Khan, R. Zheng, L. Y. Jin and
Y. J. Zhang, Org. Lett., 2015, 17, 6230–6233; (d) A. Khan, L. Yang,
J. Xu, L. Y. Jin and Y. J. Zhang, Angew. Chem., Int. Ed., 2014, 53,
11257–11260; (e) A. Khan, R. Zheng, Y. Kan, J. Ye, J. Xing and
Y. J. Zhang, Angew. Chem., Int. Ed., 2014, 53, 6439–6442; ( f ) A. Khan,
J. Xing, J. Zhao, Y. Kan, W. Zhang and Y. J. Zhang, Chemistry, 2015,
21, 120–124; (g) Y. Zhang and A. Khan, Synlett, 2015, 853–860.
8 (a) W. Guo, L. Martinez-Rodriguez, E. Martin, E. C. Escudero-Adan
and A. W. Kleij, Angew. Chem., Int. Ed., 2016, 55, 11037–11040;
(b) A. Cai, W. Guo, L. Martinez-Rodriguez and A. W. Kleij, J. Am.
Chem. Soc., 2016, 138, 14194–14197; (c) W. Guo, R. Kuniyil,
J. E. Gomez, F. Maseras and A. W. Kleij, J. Am. Chem. Soc., 2018,
140, 3981–3987; (d) W. Guo, L. Martinez-Rodriguez, R. Kuniyil,
E. Martin, E. C. Escudero-Adan, F. Maseras and A. W. Kleij, J. Am.
Chem. Soc., 2016, 138, 11970–11978; (e) J. E. Gomez, W. Guo and
A. W. Kleij, Org. Lett., 2016, 18, 6042–6045; ( f ) N. Miralles,
J. E. Gomez, A. W. Kleij and E. Fernandez, Org. Lett., 2017, 19,
6096–6099; (g) J. Xie, W. Guo, A. Cai, E. C. Escudero-Adan and
A. W. Kleij, Org. Lett., 2017, 19, 6388–6391.
In summary, a diversity-oriented Pd-catalyzed regio-selectivity
switchable cycloaddition of VECs has been developed under mild
conditions. The judicious choice of the catalyst and solvent
enables the efficient synthesis of two different types of 5-, 7-
membered N-heterocycles from an identical starting material
through formal migration [2+3] and [5+2] cycloadditions, and
potentially contributes in expediting the search for lead com-
pounds. Further studies on new reactivities of VECs and bioactive
assessments of the above N-heterocycles are under progress in
our lab.
We gratefully acknowledge the 100 Talent Program of
Chinese Academy of Sciences, the Chinese NSF (21702217),
the ‘‘1000-Youth Talents Plan’’, the Shanghai-Youth Talent, and
the Shanghai-Technology Innovation Action Plan (18JC1415300)
for financial support of this research.
9 (a) L. C. Yang, Z. Q. Rong, Y. N. Wang, Z. Y. Tan, M. Wang and
Y. Zhao, Angew. Chem., Int. Ed., 2017, 56, 2927–2931; (b) Z. Q. Rong,
L. C. Yang, S. Liu, Z. Yu, Y. N. Wang, Z. Y. Tan, R. Z. Huang, Y. Lan
and Y. Zhao, J. Am. Chem. Soc., 2017, 139, 15304–15307.
Conflicts of interest
There are no conflicts to declare.
10 S. Singha, T. Patra, C. G. Daniliuc and F. Glorius, J. Am. Chem. Soc.,
2018, 140, 3551–3554.
Notes and references
1 (a) E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem., 2014,
57, 10257–10274; (b) A. Hussain, S. K. Yousuf and D. Mukherjee,
RSC Adv., 2014, 4, 43241–43257.
2 (a) I. Nakamura and Y. Yamamoto, Chem. Rev., 2004, 104,
2127–2198; (b) C. V. Vo, M. U. Luescher and J. W. Bode, Nat. Chem.,
2014, 6, 310–314; (c) D. J. Lee, H. S. Han, J. Shin and E. J. Yoo, J. Am.
Chem. Soc., 2014, 136, 11606–11609; (d) H. Shang, Y. Wang, Y. Tian,
J. Feng and Y. Tang, Angew. Chem., Int. Ed., 2014, 53, 5662–5666;
(e) C. Guo, M. Fleige, D. Janssen-Muller, C. G. Daniliuc and
F. Glorius, J. Am. Chem. Soc., 2016, 138, 7840–7843.
3 (a) C. Zhu, G. Xu and J. Sun, Angew. Chem., Int. Ed., 2016, 55,
11867–11871; (b) J. J. Feng, T. Y. Lin, C. Z. Zhu, H. Wang, H. H. Wu
and J. Zhang, J. Am. Chem. Soc., 2016, 138, 2178–2181; (c) M. Wang,
11 (a) K. Ohmatsu, S. Kawai, N. Imagawa and T. Ooi, ACS Catal., 2014,
4, 4304–4306; (b) C. Yuan, Y. Wu, D. Wang, Z. Zhang, C. Wang,
L. Zhou, C. Zhang, B. Song and H. Guo, Adv. Synth. Catal., 2018, 360,
652–658; (c) P. Das, S. Gondo, P. Nagender, H. Uno, E. Tokunaga and
N. Shibata, Chem. Sci., 2018, 9, 3276–3281; (d) K. Ohmatsu,
N. Imagawa and T. Ooi, Nat. Chem., 2014, 6, 47–51; (e) Y. Wu,
C. Yuan, C. Wang, B. Mao, H. Jia, X. Gao, J. Liao, F. Jiang, L. Zhou,
Q. Wang and H. Guo, Org. Lett., 2017, 19, 6268–6271.
12 Y. Liu, Y. Xie, H. Wang and H. Huang, J. Am. Chem. Soc., 2016, 138,
4314–4317.
13 (a) S. Oda, J. Franke and M. J. Krische, Chem. Sci., 2016, 7, 136–141;
(b) S. Oda, B. Sam and M. J. Krische, Angew. Chem., Int. Ed., 2015, 54,
8525–8528; (c) L. K. B. Garve, P. G. Jones and D. B. Werz, Angew.
Chem., Int. Ed., 2017, 56, 9226–9230.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 12182--12185 | 12185