8574
T. Gunnlaugsson et al. / Tetrahedron Letters 44 (2003) 8571–8575
gests that the incorporation of the azobenzene chro-
mophore does not adversely affect the stability of the
double helix, indicating that this does not impose sig-
nificant physical changes on the hybridised strand. This
is important for the application of 7 or 8 as probes or
quenchers in molecular beacons. Furthermore, even
though the CD spectra of 7 or 8 were somewhat
different prior to duplex formation, only minor changes
were observed to that of the non-functionalised 17-mer,
after annealing with the 34-mer target, again indicating
only small conformational effect.
(CH3)2)2), 2.53 (2H, m, C(2)H2), 1.69 (3H, s, -N-
CHꢀC(CH3)-), 1.24 (12H, m, -N(CH(CH3)2)2); lC (100
MHz, d6-acetone) 165.9, 163.8, 156.6, 153.9, 150.8,
143.9, 136.1, 131.1, 130.3, 125.9, 122.5, 118.7, 112.0,
110.8, 85.4, 84.1, 83.7, 74.1, 64.7, 60.2, 59.0, 43.6, 39.2,
24.5, 20.5, 14.1; lP (162 MHz, d6-acetone) 149.5, 149.3;
m/z 694 (M+H); (m/z found: 694.3062, [M+H]+ calcu-
lated for C34H45N7O7P: 694.3118).
Acknowledgements
We also investigated the possibilities of 5 and 6 under-
going trans–cis photo isomerisation. However, we were
unable to record this process at room temperature in
solution. This is not unexpected, as it is known that the
trans–cis photo isomerisation for Methyl Red is very
rapid in solution. However, the trans-cis isomerisation
can for be observed in polymeric matrixes or in the
presence of cyclodextrins.19 Currently we are evaluating
the ability of 7 and 8 to undergo such isomerisation
after hybridisation to the above 34-mer CML strand.
This work was supported by the Kinerton Ltd., Trinity
College Dublin, and the Higher Education Authority in
Ireland through the HEA 1999 Research Programme
on Advanced Materials. AO’B would like to thank
Enterprise Ireland for a PhD studentship. We especially
thank Professor R. Jeremy H. Davies and Clarke S.
Stevenson, Department of Biology and Biochemistry,
Queen’s University of Belfast and Drs. John O’Brien,
Frederic Pfeffer and Susan Quinn (TCD) for their help
and support, and Dr. Hazel M. Moncrieff for helpful
discussion.
In summary, we have developed two novel azobenzene
conjugated oligonucleotides by coupling DABCYL into
thymidine at the 3%-O- and 5%-O-hydroxy moieties. To
the best of our knowledge these are the first examples
of such modified and highly coloured azobenzene–
thymidine conjugates, where the dye is directly attached
to the sugar unit. Currently we are evaluating the
properties of 7 and 8 as novel DNA probes for genetic
analysis as well components of molecular beacons. We
are also undertaking the incorporation of the DAB-
CYL into thymidine via the amide linkage. This will be
the subject of future publications.
References
1. (a) Willner, I. Acc. Chem. Res. 1997, 30, 347; (b) Kool, E.
T. Chem. Rev. 1997, 97, 1437; (c) Wnuk, S. F. Tetra-
hedron 1993, 49, 9877.
2. De Mesmaeker, A.; Ha¨ner, R.; Martin, P.; Moser, H. E.
Acc. Chem. Res. 1995, 28, 366.
3. Whitcombe, D.; Theaker, J.; Guy, S. P.; Brown, T.;
Little, S. Nature Biotech. 1999, 17, 804.
4. Nurmi, J.; Ylikoski, A.; Soukka, T.; Karp, M.; Lo¨vgren,
Characterisation of 1 and 2
T. Nuclec. Acid Res. 2000, 28, e28.
5. (a) Dobson, N.; McDowell, D. G.; French, D. J.; Brown,
L. J.; Mellor, J. M.; Brown, T. Chem. Commun. 2003,
1235; (b) Tan, W.; Fang, X.; Li, J.; Liu, X. Chem. Eur. J.
2000, 6, 1107.
6. (a) Tyagi, S.; Bratu, D. P.; Kramer, F. R. Nature Biotech.
1998, 16, 49; (b) Tayagi, S.; Kramer, F. R. Nature
Biotech. 1995, 14, 303; (c) Niemeyer, C. M.; Adler, M.
Angew. Chem., Int. Ed. 2002, 41, 3779; (d) Li, J. J.; Fang,
X.; Schuster, S. M.; Tan, W. Angew. Chem., Int. Ed.
2000, 39, 1049; (e) Fang, X.; Li, J. J.; Perlette, J.; Tan,
W.; Wang, K. Anal. Chem. 2000, 747A; (f) Brown, L. J.;
Cummins, J.; Hamilton, A.; Brown, T. Chem. Commun.
2000, 621.
7. (a) Yamazawa, A.; Liang, X.; Asanuma, H.; Komiyama,
M. Angew. Chem., Int. Ed. 2000, 39, 2356; (b) Asanuma,
H.; Liang, X.; Yoshida, T.; Yamazawa, A.; Komiyama,
M. Angew. Chem., Int. Ed. 2000, 39, 1316; (c) Asanuma,
H.; Ito, T.; Yoshida, T.; Liang, X.; Komiyama, M.
Angew. Chem., Int. Ed. 1999, 38, 2393.
8. (a) Asanuma, H.; Liang, X.; Yoshida, T.; Komiyama, M.
CHEMBIOCHEM 2001, 2, 39; (b) Takarada, T.;
Tamaru, D.; Liang, X.; Asanuma, H.; Komiyama, M.
Chem. Lett. 2001, 732.
1: Obtained in yield of 73% (0.086 g, 0.12 mmol) as a
red coloured solid; mp decomposition; lH (400 MHz,
CDCl3) 8.16 (2H, d, J=8.04 Hz, Ar), 7.91 (4H, m, Ar),
7.67 (1H, s, -N-CHꢀC(CH3)), 6.77 (2H, d, J=7.52 Hz,
Ar), 6.50 (1H, m, C(1)H), 5.60 (1H, d, J=6.0, C(3)H),
4.38 (1H, m, C(4)H), 4.12 ( 2H, m, -P-O-CH2-CH2),
3.95 (3H, m, -P-O-CH2-CH2), 3.65 (2H, m, C(5)H2),
3.12 (6H, s, -N(CH3)2), 2.68 (2H, m, -N(CH(CH3)2)2),
2.35 (2H, m, C(2)H2), 1.98 (3H, s, -N-CHꢀC(CH3)),
1.25 (12H, m, -N(CH(CH3)2)2); lC (100 MHz, d6-
DMSO) 165.8, 163.6, 156.3, 152.9, 150.4, 143.6, 135.5,
130.6, 128.9, 125.5, 122.0, 117.4, 111.4, 85.0, 84.6, 75.9,
64.2, 63.4, 58.7, 43.3, 38.0, 37.7, 24.7, 20.5, 14.1; lP (162
MHz, d6-DMSO) 149.8, 149.4; m/z 694.1 (M+H); m/z
found: 694.3093 ([M+H]+ calculated for C34H45N7O7P:
694.3118).
2: Obtained in a yield of 80% (0.132 g, 0.19 mmol) as a
red coloured solid; mp decomposition; lH (400 MHz,
d6-acetone) 8.22 (2H, d, J=8.04 Hz, Ar), 7.91 (4H, m,
Ar), 7.48 (1H, s, -N-CHꢀC(CH3)), 6.89 (2H, d, J=7.52
Hz, Ar), 6.37 (1H, m, C(1)H), 4.87 (1H, d, J=6.0 Hz,
C(3)H), 4.65 (2H, m, C(5)H2), 4.42 (1H, m, C(4)H),
3.89 (2H, m, -P-O-CH2-CH2), 3.71 (2H, m, -P-O-CH2-
CH2), 3.15 (6H, s, -N(CH3)2), 2.80 (2H, m, -N(CH-
9. (a) Asanuma, H.; Ito, T.; Komiyama, M. Tetrahedron
Lett. 1999, 40, 2671; (b) Asanuma, H.; Ito, T.;
Komiyama, M. Tetrahedron Lett. 1998, 39, 9015; (c)