monoamine oxidase, aldose reductase, tumor necrosis
factor R, and thymidylate synthase.5,6 Therefore, they are
interesting as structural scaffolds and have been assigned
as privileged structures in drug development.2a Many
methods for syntheses of quinazolinone derivatives2,7,8
have been developed; however, ortho-amino or ortho-nitro
benzoic acid derivatives are usually used as the starting
materials, and they are not readily available or are difficult
to prepare. Recently, copper-catalyzed Ullmann N-aryla-
tions have made great progress,9 and the N-arylation
strategy has been used to make N-heterocycles.10 We have
also developed some efficient methods for copper-cata-
lyzed cross couplings11 and synthesis of N-heterocycles.12
However, to the best of our knowledge, there is no example
of constructing N-heterocycles via sequential Ullmann-
type coupling under air together with aerobic oxidative
C-H amidation. Herein, we report a simple, practical, and
efficient copper-catalyzed strategy for synthesis of quina-
zolinone derivatives through cascade reactions of substi-
tuted 2-halobenzamides and (aryl)methanamines under air
without the addition of any ligand or additive.
Initially, 2-iodobenzamide and benzylamine were used
as the model substrates to optimize reaction conditions
including catalysts, bases, solvents, and reaction tempera-
tures under air (1 atm). As shown in Table 1, five copper
catalysts (0.1 equiv) were tested with 3 equiv of K2CO3
(relative to amount of 2-iodobenzamide) as the base and
DMSO as the solvent at 110 °C (entries 1-5), and CuBr
provided the highest yield (entry 2). Other bases, Cs2CO3,
Na2CO3, and K3PO4 (entries 6-8), were screened, and
Table 1. Copper-Catalyzed Cascade Coupling of 2-Iodobenza-
mide with Benzylamine To Form 2-Phenylquinazolin-4(3H)-
one under Air: Optimization of Conditionsa
entry
cat.
CuI
base
solvent
temp (°C) yield (%)b
1
2
K2CO3
K2CO3
K2CO3
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
110
110
110
110
110
110
110
110
110
110
61
75
CuBr
3
Cu2O
56
4
Cu(OAc)2 K2CO3
70
5
CuO
K2CO3
trace
42
6
CuBr
CuBr
CuBr
CuBr
CuBr
Cs2CO3
7
Na2CO3 DMSO
69
8
K3PO4
K2CO3
K2CO3
DMSO
DMF
48
9
12
10
ethylene
glycol
18
11
12
13
14
15
16
CuBr
CuBr
CuBr
CuBr
CuBr
CuBr
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
dioxane
toluene
DMSO
DMSO
DMSO
DMSO
110
110
70
0
0
0
90
42
70
11c
130
110
a Reaction conditions: 2-iodobenzamide (0.2 mmol), benzylamine
(0.4 mmol), catalyst (0.02 mmol), base (0.6 mmol), solvent (2 mL) under
air. b Isolated yield. c Under nitrogen atmosphere (extrusion of air).
K2CO3 showed the best activity (compare entries 2, 6-8).
The effect of solvents was also investigated, and DMSO
was the optimal solvent (compare entries 2 and 9-12). We
attempted different reaction temperatures (entries 13-15),
and 110 °C was the better choice. A major Ullmann-type
N-arylation product, 2-(benzylamino)benzamide (4), was
observed with a small amount of 2-phenylquinazolin-
4(3H)-one appearing when coupling of 2-iodobenzamide
with benzylamine was carried out under a nitrogen atmo-
sphere (extrusion of air) (entry 16).
The scope of copper-catalyzed domino reactions of
substituted 2-halobenzamides with (aryl)methanamines
was investigated under the optimized conditions [using 10
mol % of CuBr as the catalyst, 3 equiv of K2CO3 as the base
(relative to the amount of 2-halobenzamides), and DMSO
as the solvent]. As shown in Table 2, most of the substrates
examined provided good yields at 100-120 °C. For sub-
stituted 2-halobenzamides, the aryl iodides showed higher
reactivity than the corresponding bromides, and only aryl
chloride containing an electron-withdrawing group could
perform this domino reaction (entry 25). In general, no
significant difference of reactivity was observed for the
examined substituted 2-bromobenzamides and (aryl)me-
thanamines with varied electronic properties, including
electron-rich, electron-poor, and neutral substrates. The
copper-catalyzed domino synthesis of quinazolinones
could tolerate various functional groups including ether
(entries 14-16), a C-Cl bond (entries 17-20), nitro (ent-
ries 21-23, 25) in the substituted 2-halobenzamides, ether
(9) For recent reviews on copper-catalyzed cross couplings, see: (a)
Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428. (b) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (c) Beletskaya,
I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337. (d) Evano,
G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (e) Ma, D.;
Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (f) Monnier, F.; Taillefer, M.
Angew. Chem., Int. Ed. 2009, 48, 6954. For selected samples, see:(g)
Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2001, 123, 7727. (h) Klapars, A.; Huang, X. H.; Buchwald, S. L. J.
Am. Chem. Soc. 2002, 124, 7421. (i) Antilla, J. C.; Klapars, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684. (j) Okano, K.;
Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 4987. (k) Gujadhur,
R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315. (l)
Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Yoshifuji, F. Chem. Commun.
2004, 1994. (m) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem.
Soc. 1998, 120, 12459. (n) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5,
2453.
(10) For recent studies on the synthesis of N-heterocycles through
Ullmann-type couplings, see: (a) Martin, R.; Rivero, M. R.; Buchwald,
S. L. Angew. Chem., Int. Ed. 2006, 45, 7079. (b) Evindar, G.; Batey, R. A.
J. Org. Chem. 2006, 71, 1802. (c) Bonnaterre, F.; Bois-Choussy, M.; Zhu,
J. Org. Lett. 2006, 8, 4351. (d) Zou, B.; Yuan, Q.; Ma, D. Angew. Chem.,
Int. Ed. 2007, 46, 2598. (e) Chen, Y.; Xie, X.; Ma, D. J. Org. Chem. 2007,
72, 9329. (f) Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org.
Chem. 2007, 72, 1510. (g) Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D.
Org. Lett. 2008, 10, 2761. (h) Altenhoff, G.; Glorius, F. Adv. Synth.
Catal. 2004, 346, 1661.
(11) (a) Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2005, 70,
8107. (b) Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.;Eur. J.
2006, 12, 3636. (c) Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem.
2007, 72, 672. (d) Guo, X.; Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. Adv.
Synth. Catal. 2006, 348, 2197.
(12) (a) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem., Int. Ed.
2009, 48, 348. (b) Huang, C.; Fu, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.
Commun. 2008, 6333. (c) Yang, D.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. J.
Org. Chem. 2008, 73, 7841. (d) Yang, D.; Liu, H.; Yang, H.; Fu, H.; Hu,
L.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2009, 351, 1999. (e) Wang, F.;
Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2009, 11, 2469.
Org. Lett., Vol. 13, No. 6, 2011
1275