C O M M U N I C A T I O N S
Table 1. Chemical Shifts of Protons in 5
those going from 4 to 11 and 12 involving linear conjugation. The
fine structures at 580-650 nm (Figure 2) are also collectively
shifted by about 8 nm to the longer wavelength going from 4 to 5.
A comparison with the electronic spectral data of 317 further adds
evidence that the dihydropyrene unit in 5 interacts with greater effect
than the benzene in 3, validating our prediction that the relatively
small HOMO-LUMO gap of the two identical dihydropyrene
moieties in 5 optimizes the opportunity for observing homocon-
jugation that earlier reported systems failed to reveal.
CH at C10b
3
H1,3
H2
H4,10
H5,9
H6,8
H7
-4.14
9.01
8.42
8.75
8.61
8.97
8.63
CH at C10b′,10c′
H1′,3′
4.05
H2′
H4′,10′
H5′,9′
H6′,8′
H7′
3
-5.16, -4.86
-
7.48
8.12
8.23
7.79
The above observations strongly suggest through-space homo-
conjugation between the two macrocyclic 14π systems in 5. The
behavior of a spiro(homo)-conjugation effect in an electronic
spectrum could be a shift of the absorption maxima to longer or
shorter wavelength.19 Thus, the homo-conjugation effect in 5
observed in our work corresponds to a class I spiro(homo)-
conjugation19 with its absorption maxima shifted to longer wave-
length compared to those of the reference compound 4.
Figure 1. 1H NMR spectrum of the aromatic protons in 5.
Acknowledgment. Financial support for the work was provided
by the National University of Singapore.
Supporting Information Available: Experimental details and
analytical data for compounds 5-8. This material is available free of
References
(1) (a) Keehn, P.; Resenfeld, S. Cyclophanes; Academic Press: New York,
1983. (b) Vo¨gtle, F. Cyclophanes; Springer-Verlag: Heidelberg, 1983.
(c) Vo¨gtle, F. Supramolecular Chemistry; Weiley: Chichester, 1989. (d)
Vo¨gtle, F. Cyclophane Chemistry; Weiley, Chichester, 1989. (e) Diederich,
F. Cyclophanes; The Royal Society of Chemistry: Cambridge, 1991.
(2) (a) Semmelhack, M. E.; Foos, J. S.; Katz, S. J. Am. Chem. Soc. 1973, 95,
7325. (b) Batich, C.; Heibronner, E.; Rommel, E.; Semmelhack, M. F.;
Foos, J. S. J. Am. Chem. Soc. 1974, 96, 7662.
Figure 2. Electronic spectra of 4 (- ‚ -) and 5 (;).
Table 2. Principal Absorption Spectral Bands [λmax (log ꢀmax)] for
3, 4, 5, 11, and 12
(3) (a) Maslak, P. AdV. Mater. 1994, 6, 405. (b) Fu, W.; Feng, J. K.; Pan, G.
B. J. Mol. Struct. (THEOCHEM) 2001, 545, 157. (c) Kim, S. Y.; Lee,
M.; Boo, B. H. J. Chem. Phys. 1998, 109, 2593. (d) Feng, J. K.; Sun, X.
Y.; Ren, A. H.; Yu, K. Q.; Sun, C. C. J. Mol. Struct. (THEOCHEM)
1999, 489, 247.
(4) (a) Durr, H.; Gleiter, R. Angew. Chem., Int. Ed. Engl. 1978, 17, 559. (b)
Raman, J. V.; Nielsen, K. E.; Randall, L. H.; Burke, L. A.; Dmitrienko,
G. I. Tetrahedron Lett. 1994, 35, 5973. (c) Dodziuk, H.; Leszczynski, J.;
Jackowski, K. Tetrahedron 2001, 57, 5509.
(5) Bock, H. Angew. Chem., Int. Ed. Engl. 1977, 16, 613.
(6) (a) Mitchell, R. H.; Otsubo, T.; Boekelheide, V. Tetrahedron Lett. 1975,
16, 219. (b) Mitchell, R. H.; Boekelheide, V. J. Am. Chem. Soc. 1974,
96, 1547.
(7) Lai, Y.-H.; Jiang, J. J. Org. Chem. 1997, 62, 4412.
(8) Phillips, J. B.; Molyneux, R. J.; Sturm, E.; Boekelheide, V. J. Am. Chem.
Soc. 1967, 89, 1704.
(9) Prepared from a reaction between commercially available 2,6-dichloro-
aniline and CuCN. See Supporting Information.
compd
R
p
â
â′
317
418
645.5 (2.51)
641 (2.52)
648 (2.78)
648 (2.51)
(tail to700)
481 (3.81)
463 (3.78)
488 (4.06)
493 (4.18)
577 (4.20)
383 (4.66)
377 (4.57)
416 (4.04)
390 (4.52)
400 (4.12)
341 (4.93)
337.5 (4.96)
341 (5.02)
348 (5.15)
368 (4.72)
5
1118
1218
clearly extends to an appreciable distance with respective to each
molecular plane.
(10) The corresponding 2,7-diaryldihydropyrene was isolated in 28%.
(11) Oki, M. Applications of Dynamic NMR Spectroscopy to Organic
Chemistry; VCH Publishers: New York, 1985.
Transannular π-π electronic interactions could best be studied
by electronic spectroscopy. The electronic spectra of 4 and 5 are
illustrated in Figure 2. Bathochromic shift and peak broadening of
absorption bands are generally observed going from 4 to 5. This is
consistent with appreciable π-π interaction between the two 14π
systems in 5.
Using the Clar’s R, p, â, and â′ notation,16 the λmax of the
principal bands of 5 could be compared to those of the phenyl-
substituted analogue 3 and the biphenyl-type conjugation in 11 and
12 (Table 2). Comparing to the spectrum of 4, the most significant
shifts of 25 and 39 nm were observed for the p and â bands of 5,
respectively, with relatively smaller shifts for the R and â′ bands.
The bathochromic shifts of the p and â bands of 5 are similar to
(12) (a) Rossa, L.; Vo¨gtle, F. Top. Curr. Chem. 1983, 113, 1. (b) Knops, P.;
Sendhoff, N.; Mekelburger, H. B.; Vo¨gtle, F. Top. Curr. Chem. 1991,
161, 1. (c) Ostrowicki, A.; Koepp, E.; Vo¨gtle, F. Top. Curr. Chem. 1991,
161, 37.
(13) Borch, R. F. J. Org. Chem. 1969, 34, 627.
(14) (a) Mitchell, R. H. AdV. Theor. Interesting Mol. 1989, 1, 135. (b) Mitchell,
R. H. Chem. ReV. 2001, 101, 1301.
(15) Lai, Y.-H.; Zhou, Z. L. J. Org. Chem. 1997, 62, 925.
(16) Clar, E. Polycyclic Hydrocarbons; Academic Press-Springer-Verlag:
London, 1964; Vol. 2, p 116.
(17) Anker, W. PhD Thesis, University of Victoria, 1982.
(18) Mitchell, R. H.; Chaudhary, M.; Dingle, T. W.; Williams, R. V. J. Am.
Chem. Soc. 1984, 106, 7776.
(19) (a) Simmons, H. E.; Fukunage, T. J. Am. Chem. Soc. 1967, 89, 5208. (b)
Hoffmann, R.; Iwamura, A.; Zeiss, G. D. J. Am. Chem. Soc. 1967, 89,
5215.
JA0382260
9
J. AM. CHEM. SOC. VOL. 125, NO. 47, 2003 14297