8900
V. Popsa6in et al. / Tetrahedron Letters 44 (2003) 8897–8900
Table 1. NMR spectral data for compounds 3 and ent-3
Compound
Solvent
CDCl3
Methanol-d4 2.53
CDCl3
CDCl3
lH (ppm)
lC (ppm)
Reference
2×H-2
2×H-3
H-4
H-5 and
2×H-6
C-1
C-2
C-3
C-4
C-5
C-6
3
2.57
2.26
2.25
2.28
2.23
4.59
4.68
4.60
4.57
3.65
3.60
3.75
3.69
178.21
180.44
177.31
178.00
28.45
29.34
28.31
28.40
23.90
24.68
23.89
23.90
80.77
81.79
80.62
80.70
73.56
74.53
73.42
73.50
63.27
63.77
63.28
63.30
This work
Ref. 12
This work
Ref. 5
ent-3
2.60
2.52
In conclusion, a new and flexible strategy for the syn-
thesis of enantiopure 5-hydroxyalkylbutan-4-olides by
mann, W.; Scholz, G.; Bunte, G.; Wolff, C.; Peters, E. M.;
Peters, K.; Von Schnering, H. G. Liebigs Ann. Chem. 1992,
1069–1080; (q) Marshall, J. A.; Welmaker, G. S. Synlett
1992, 537–538; (r) Figade`re, B.; Haramange, J. C.; Lau-
rens, A.; Cave´, A. Tetrahedron Lett. 1991, 32, 7539–7542;
(s) Scholz, G.; Tochtermann, W. Tetrahedron Lett. 1991,
32, 5535–5538.
chirality transfer from
D-xylose has been developed.
The synthetic pathway that provided an access to (+)-
and (−)-5,6-dihydroxy-4-hexanolides 3 and ent-3 for-
mally represents a new enantiodivergent synthesis of
(+)- and (−)-muricatacin. This approach is potentially
useful for the preparation of hitherto unknown 7-oxa
(+)- and (−)-muricatacin analogues 24a and 24b (via 22
and ent-22).
4. (a) Chadrasekhar, M.; Chandra, K. L.; Singh, V. K.
Tetrahedron Lett. 2002, 43, 2773–2775; (b) Popsavin, V.;
Grabez, S.; Popsavin, M.; Petrovic´, J. Carbohydrate Lett.
2000, 3, 411–418; (c) Yoon, S.-H.; Moon, H.-S.; Hwang,
S.-K.; Choi, S. R.; Kang, S. K. Bioorg. Med. Chem. 1998,
6, 1043–1049; (d) Rassu, G.; Pinna, L.; Spanu, P.; Zanardi,
F.; Battistini, L.; Casiraghi, G. J. Org. Chem. 1997, 62,
4513–4517; (e) Gravier-Pelletier, C.; Saniere, M.; Charvet,
I.; Le Merrer, Y.; Depezay, J.-C. Tetrahedron Lett. 1994,
35, 115–118; (f) Kang, S. K.; Cho, H. S.; Sim, H. S.; Kim,
B. K. J. Carbohydr. Chem. 1992, 11, 807–812.
Acknowledgements
This work was supported by a research grant from the
Ministry of Science, Technologies and Development of
the Republic of Serbia (Grant No. 1896).
5. Saniere, M.; Charvet, I.; Le Merrer, Y.; Depezay, J.-C.
References
Tetrahedron 1995, 51, 1653–1662.
6. Popsavin, M.; Popsavin, V.; Vukojevic´, N.; Miljkovic´, D.
Collect. Czech. Chem. Commun. 1994, 59, 1884–1888.
7. Szeja, W. Pol. J. Chem. 1980, 54, 1323–1325.
8. Prakash, K. R. C.; Rao, S. P. Tetrahedron 1993, 49,
1505–1510.
1. Reiser, M. J.; Kozlowski, J. F.; Wood, K. V.; McLaughlin,
J. L. Tetrahedron Lett. 1991, 32, 1137–1140.
2. Cave´, A.; Chaboche, C.; Figade`re, B.; Haramange, J. C.;
Laurens, A.; Peyrat, J. F.; Pichon, M.; Szlosek, M.;
Cotte-Lafitte, J.; Quero, A. M. Eur. J. Med. Chem. 1997,
32, 617–623.
9. Selected data for 2: mp 93–94°C (from CH2Cl2–hexane),
[h]D +135.8 (c 1.05 in CHCl3); 1H NMR (CDCl3): l
3. (a) Rangavan, S.; Joseph, S. C. Tetrahedron: Asymmetry
2003, 14, 101–105; (b) Carda, M.; Rodriguez, S.; Gonzalez,
F.; Castillo, E.; Villanueva, A.; Marco, J. A. Eur. J. Org.
Chem. 2002, 2649–2655; (c) Baylon, C.; Prestat, G.; Heck,
M.-P.; Mioskowski, C. Tetrahedron Lett. 2000, 41, 3833–
3835; (d) Couladouros, E. A.; Mihou, A. P. Tetrahedron
Lett. 1999, 40, 4861–4862; (e) Solladie, G.; Hanquet, G.;
Izzo, I.; Crumbie, R. Tetrahedron Lett. 1999, 40, 3071–
3074; (f) Szlosek, M.; Franck, X.; Figade`re, B.; Cave´, A.
J. Org. Chem. 1998, 63, 5169–5172; (g) Chang, S.-W.;
Hung, C.-Y.; Liu, H.-H.; Uang, B. J. Tetrahedron: Asym-
metry 1998, 9, 521–529; (h) Quayle, P.; Rahman, S.;
Herbert, J. Tetrahedron Lett. 1995, 36, 8087–8088; (i) van
Aar, M. P. M.; Thijis, L.; Zwanenburg, B. Tetrahedron
1995, 51, 11223–11234; (j) Bonini, C.; Federici, C.; Rossi,
L.; Righi, G. J. Org. Chem. 1995, 60, 4803–4812; (k)
Somfai, P. J. Chem. Soc., Perkin Trans. 1 1995, 817–819;
(l) Marshall, J. A.; Welmaker, G. S. J. Org. Chem. 1994,
59, 4122–4125; (m) Makabe, H.; Tanaka, A.; Oritani, T.
Biosci., Biotechnol. Biochem. 1993, 57, 1028–1029; (n)
Saiah, M.; Bessodes, M.; Antoniakis, K. Tetrahedron Lett.
1993, 34, 1597–1598; (o) Wang, Z. M.; Zhang, X. L.;
Sharpless, K. B.; Sinha, S. C.; Sinha-Bagchi, A.; Keinan,
E. Tetrahedron Lett. 1992, 33, 6407–6410; (p) Tochter-
1.92–2.68 (m, 4H, 2×CH2), 3.78 (dd, 1H, J4,5=2.7, J5,6=
1.5 Hz, H-5), 4.58 (d, 1H, Jgem=11.9 Hz, PhCH-a),
4.74–4.85 (m, 2H, H-4 and PhCH-b), 7.33 (m, 5H, Ph), 9.68
(d, 1H, H-6); 13C NMR (CDCl3): l 23.63 and 27.77
(2×CH2), 73.53 (PhCH2), 78.88 (C-4), 84.02 (C-5), 128.20,
128.52, 128.69 and 136.18 (Ph), 176.56 (C-1), 201.57 (C-6).
10. Selected data for ent-2: mp 93–94°C (from CH2Cl2–hex-
1
ane), [h]D −129.8 (c 1.0 in CHCl3); H NMR (CDCl3): l
1.90–2.65 (m, 4H, 2×CH2), 3.76 (dd, 1H, J4,5=2.7, J5,6
=
1.5 Hz, H-5), 4.60 (d, 1H, Jgem=11.9 Hz, PhCH-a),
4.72–4.84 (m, 2H, H-4 and PhCH-b), 7.37 (m, 5H, Ph), 9.69
(d, 1H, H-6); 13C NMR (CDCl3): l 23.53 and 27.72
(2×CH2), 73.45 (PhCH2), 78.84 (C-4), 83.94 (C-5), 128.19,
128.42, 128.61 and 136.16 (Ph), 176.57 (C-1), 201.84 (C-6).
11. Markidis, T.; Kokotos, G. J. Org. Chem. 2001, 66,
1919–1923.
12. Lee, J.; Lewin, N. E.; Acs, P.; Blumberg, P. M.; Marquez,
V. E. J. Med. Chem. 1996, 39, 4912–4919.
13. Compound 3 (syrup): [h]D +57.99 (c 2.01 in MeOH); Ref.
12: [h]D +58.18 (c 2.03 in MeOH); 1H and 13C NMR data
in Table 1.
14. Compound ent-3 (syrup): [h]D −40.03 (c 2.07 in MeOH);
Ref. 5: [h]D −43.3 (c 0.9 in MeOH); 1H and 13C NMR data
in Table 1.