1714
I. Cumpstey
LETTER
(15) (a) Haines, A. H. Org. Biomol. Chem. 2004, 2, 2352.
(b) Takahashi, H.; Fukuda, T.; Mitsuzuka, H.; Namme, R.;
Miyamoto, H.; Ohkura, Y.; Ikegami, S. Angew. Chem. Int.
Ed. 2003, 42, 5069. (c) Pérez, G. S.; Pérez G, R. M.; Pérez
G, C.; Zavala S, M. A.; Vargas S, R. Pharm. Acta Helv.
1997, 72, 105. (d) Hodosi, G.; Kovac, P. Carbohydr. Res.
1998, 308, 63. (e) Farkas, J.; Sebesta, K.; Horska, K.;
Samek, Z.; Dolejs, L.; Sorm, F. Collect. Czech. Chem.
Commun. 1969, 34, 1118. (f) Whistler, R. L.; Frorein, A. J.
Org. Chem. 1961, 26, 3946. (g) Goueth, P. Y.; Ronco, G.;
Villa, P. J. Carbohydr. Chem. 1994, 13, 679. (h) Goueth, P.
Y.; Fauvin, M.; Chelle-Regnaut, I.; Ronco, G.; Villa, P. J.
Carbohydr. Chem. 1994, 13, 697.
(1 H, d, H-1b), 4.60, 4.93 (2 H, ABq, JAB = 11.1 Hz, PhCH2),
4.60 (2 H, s, PhCH2), 4.69–4.80 (5 H, m, H-1a, 2 × PhCH2),
5.58 (1 H, s, PhCH), 7.21–7.48 (25 H, m, Ar-H). 13C NMR
(100 MHz, CDCl3): d = 36.1 (t, C-6a), 53.0 (d, C-2b), 55.0,
57.2 (2 × q, 2 × OCH3), 67.9 (d, C-5b), 68.8 (t, C-6b), 72.2,
72.4, 73.0, 75.2 (4 × t, 4 × PhCH2), 72.5, 75.0, 77.2, 78.1,
80.5 (5 × d, C-2a, C-3a, C-4a, C-5a, C-3b), 80.0 (d, C-4b), 99.0
(d, C-1a), 101.6 (d, PhCH), 103.2 (d, C-1b), 126.2, 127.7,
127.7, 127.8, 127.9, 128.0, 128.3, 128.4, 128.5, 129.0 (10 ×
d, Ar-CH), 137.7, 138.5, 138.5, 138.7, 138.5 (5 × s, 5 × Ar-
C). MS (MALDI): m/z = 874 [M + K+], 858 [M + Na+].
(22) Typical Procedure for the Formation of Thioether-
Bridged Pseudodisaccharides.
(16) Haradahira, T.; Maeda, M.; Omae, H.; Yano, Y.; Kojima, M.
Chem. Pharm. Bull. 1984, 32, 4758.
(17) Hall, L. D.; Miller, D. C. Carbohydr. Res. 1976, 47, 299.
(18) Takeo, K.; Shibata, K. Carbohydr. Res. 1984, 133, 147.
(19) Bernlind, C.; Oscarson, S.; Widmalm, G. Carbohydr. Res.
1994, 263, 173.
(20) Contour-Galcera, M. O.; Guillot, J. M.; Ortiz-Mellet, C.;
Pflieger-Carrara, F.; Defaye, J.; Gelas, J. Carbohydr. Res.
1996, 281, 99.
Thioacetate 7–9 (0.1–0.4 mmol) was dissolved in MeOH
(3 mL) and the solution was degassed and put under argon.
MeONa (3 equiv) was added, and the mixture was stirred at
r.t. After complete conversion to the thiol, as shown by TLC
(approx 1 h), the mixture was poured into NH4Cl (30 mL of
a sat. aq solution) and extracted with CH2Cl2 (2 × 20 mL).
The combined organic extracts were dried (Na2SO4),
filtered, and concentrated in vacuo. Sulfonate 1–3 (1.5
equiv) was dissolved in DMF (4 mL) and added to the crude
thiol. NaH (60% in oil, 2 equiv) was added, and the mixture
stirred at 50 °C under argon. After TLC showed the complete
disappearance of thiol (approx. 30 min), the mixture was
poured into NH4Cl (25 mL of a sat. aq solution) and
extracted with Et2O (3 × 25 mL). The combined organic
extracts were dried (Na2SO4), filtered, and concentrated in
vacuo. The residue was purified by flash column
(21) Typical Data – (Methyl 3-O-Benzyl-4,6-O-benzylidene-2-
deoxy-b-D-mannopyranos-2-yl) (Methyl 2,3,4-Tri-O-
benzyl-6-deoxy-a-D-mannopyranos-6-yl) Sulfane (12).
A colourless oil; [a]D23 –2.0 (c 0.5 in CHCl3). 1H NMR (400
MHz, CDCl3): d = 2.98 (1 H, m, H-6a), 3.27–3.32 (2 H, m,
H-5b, H-6¢a), 3.34, 3.47 (6 H, 2 × s, 2 × OCH3), 3.55 (1 H, dd,
J1,2 = 1.5 Hz, J2,3 = 4.4 Hz, H-2b), 3.76–3.88 (6 H, m, H-2a,
H-3a, H-4a, H-5a, H-3b, H-6b), 4.07 (1 H, at, J = 9.4 Hz, H-
4b), 4.28 (1 H, dd, J5,6¢ = 4.8 Hz, J6,6¢ = 10.4 Hz, H-6¢b), 4.48
chromatography (pentane, EtOAc) to afford the thioether-
linked pseudodisaccharide 10–15 (see Table 1).
Synlett 2006, No. 11, 1711–1714 © Thieme Stuttgart · New York