J. Guo et al. / Tetrahedron Letters 50 (2009) 933–935
935
336033 or e-mail: deposit@ccdc.cam.ac.Uk) Supplementary data
associated with this article can be found, in the online version, at
References and notes
1. (a) Smith, J. H.; Heidema, J. H.; Kaiser, E. T. J. Am. Chem. Soc. 1972, 94, 9276; (b)
Faragher, R.; Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1979, 249; (c) Gilchrist,
T. L. Chem. Soc. Rev. 1983, 12, 53; (d) Gilchrist, T. L.; Roberts, T. G. J. Chem. Soc.,
Perkin Trans. 1 1983, 1283.
2. (a) Zimmer, R.; Reissig, H.-U. J. Org. Chem. 1992, 57, 339; (b) Hippeli, C.; Reissig,
H.-U. Synthesis 1987, 77.
3. Hippeli, C.; Reissig, H.-U. Liebigs Ann. Chem. 1990, 217.
4. (a) Zimmer, R.; Reissig, H.-U. Angew. Chem., Int. Ed. Engl. 1988, 27, 1518; (b)
Zimmer, R.; Reissig, H.-U. Liebigs Ann. Chem. 1991, 553; (c) Zimmer, R.; Reissig,
H.-U. Synthesis 1989, 908; (d) Hausherr, A. R.; Orschel, B.; Scherer, S.; Reissig,
H.-U. Synthesis 2001, 1377.
Figure 1. ORTEP of compound 4c0.
5. (a) Werbitzk, O.; Klier, K.; Felber, H. Liebigs Ann. Chem. 1990, 267; (b) Keck, G.
E.; Romer, D. R. J. Org. Chem. 1993, 58, 6083; (c) Naruse, M.; Aoyagi, S.;
Kibayashi, C. Tetrahedron Lett. 1994, 35, 595.
OH
N
6. (a) Buron, C.; Kaim, L. E.; Uslu, A. Tetrahedron Lett. 1997, 38, 8027; (b) Bartlett, P.
D.; Sargent, G. D. J. Am. Chem. Soc. 1965, 87, 1297.
7. Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic
Synthesis with Diazo compounds; Wiley: New York, 1998.
Br
R1
1
8. For some reviews, see: (a) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1978, 17,
800; (b) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911; (c) Davies, H. M. L.;
Antoulinakis, E. Org. React. 2001, 57, 1.
9. For reviews, see: Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem.
Rev. 2003, 103, 977.
10. (a) Storm, D. L.; Spencer, T. A. Tetrahedron Lett. 1967, 8, 1865; (b) Son, S.;
Fu, G. C. J. Am. Chem. Soc. 2007, 129, 1046; (c) Zhao, L.-B.; Guan, Z.-H.; Han,
Y.; Xie, Y.-X.; He, S.; Liang, Y.-M. J. Org. Chem. 2007, 72, 10276. and
references therein.
11. Kambe, M.; Arai, E.; Suzuki, M.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2001, 3,
2575.
O
N
O
H
R2
N
N
N
2
R2
N2
MLn
R1
R1
N
C
A
B
NO
H
O
N
MLn
N
N2
R2
12. (a) Wityak, J.; Sielecki, T. M.; Pinto, D. J.; Emmett, G.; Sze, Y. Y.; Liu, J.; Tobin, A. E.;
Wang, S.; Jiang, B.; Ma, P.; Mousa, S. A.; Wexler, R. R.; Olson, R. E. J. Med. Chem.
1997, 40, 50; (b) Groutas, W. C.; Venkataraman, R.; Chong, L. S.; Yoder, J. E.; Epp, J.
B.; Stanga, M. A.; Kim, E.-H. Bioorg. Med. Chem. 1995, 3, 125.
13. Zinner, G.; Gunther, H. Chem. Ber. 1965, 98, 1353.
R2
R2
R1
R1
4
3
2
14. Solid-phase synthesisofD
2-isoxazolines:(a)Cheng, J.-F.;Mjalli, A. M. Tetrahedron
Scheme 3. Proposed reaction mechanisms.
Lett. 1998, 39, 939; (b) Shankar, B. B.; Yang, D. Y.; Girton, S.; Ganguly, A. K.
Tetrahedron Lett. 1998, 39, 2447; (c) Zou, N.; Jiang, B. J. Comb. Chem. 2000, 2, 6.
15. (a) Banks, B. J.; Barrett, A. G. M.; Russell, M. A.; Williams, D. J. J. Chem. Soc., Chem.
Commun. 1983, 16, 873;(b) Witczak, Z.; Krolikowska, M. Pol. J. Chem. 1981, 55, 89;
(c) Narasaka, K.; Ukaji, Y. Chem. Lett. 1984, 147; (d) Canonne, P.; Thibeault, D.;
Fytas, G. Tetrahedron 1986, 42, 4203; (e) Jarrar, A. A.; Hussein, A. Q.; Madi, A. S. J.
Heterocycl. Chem. 1990, 27, 275; (f) Park, C. A. J. Heterocycl. Chem. 1976, 13, 449.
diazo compound to provide the nitrosopyrrolidine intermediate C,
which could form N-nitrosopyrrolizine product 4 through 1,3-ni-
troso migration.22 In reactions using trimethylsilyldiazaomethane,
the trimethylsilyl group (R2) in product 4 seems to easily fall off
and is replaced by a proton. In reactions with base and metal cata-
lyst, electron-deficient nitrosoalkene A reacts with metal carbene
complex exclusively, while electron-rich nitrosoalkene favors
cycloaddition with diazo compounds directly. In reactions without
16. Recent reports on new synthetic methods of
D
2- isooxazoline: (a) Cecchi, L.;
Sarlo, F. D.; Machetti, F. Tetrahedron Lett. 2005, 46, 7877; (b) Jiang, D.; Peng, J.;
Chen, Y. Org. Lett. 2008, 10, 1695.
17. (a) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863; (b) Lohse-Fraefel, N.;
Carreira, E. M. Org. Lett. 2005, 7, 2011; (c) Serizawa, M.; Ukaji, Y.; Inomata, K.
Tetrahedron: Asymmetry 2006, 17, 3075; (d) Lee, C. K. Y.; Herlt, A. J.; Simpson, G.
W.;Willis, A. C.; Easton, C. J. J. Org. Chem. 2006, 71, 3221;(e) Thomas, P. J.; Axtell, A.
T.; Klosin, J.; Peng, W.; Rand, C. L.; Clark, T. P.; Landis, C. R.; Abboud, K. A. Org. Lett.
2007, 9, 2665;(f)Norman,A. L.;Mosher,M. D. TetrahedronLett. 2008, 49, 4153;For
stereoselective synthesis of isoxazoline through cycloaddition of aliphatic chiral
nitrle oxide and optically active allylic alcohol,see: (g) Kanemasa, S.; Nishiuchi,
M.; Kamimura, A.; Hori, K. J. Am. Chem. Soc. 1994, 116, 2324; (h) Bode, J. W.;
Fraefel, N.; Muri, D.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 2001, 40, 2082.
18. Auwers, K. V.; Heimke, P. Liebigs Ann. Chem. 1927, 458, 209.
19. General procedure: The oxime (1 mmol), freshly grounded Na2CO3 (3 mmol)
and CuO (0.1 mmol) were mixed in a flask with a stir bar. The flask was
vacuumed/filled with nitrogen twice before adding 10 mL of dry
dichloromethane and trimethylsilyl diazomethane (ether solution, 2.0 M,
2.5 mmol) or tert-butyl diazoacetate (2.5 mmol). The mixture was stirred at
room temperature for 24 h under nitrogen. The solution was filtered, and the
solvent was removed under reduced pressure. The residue was purified by
column chromatography on silica gel to afford the product.
20. Some of the compounds listed in Table 2 have been reported previously using
different synthetic methods. Compound 3a: (a) Conti, D.; Rodriquez, M.; Sega, A.;
Taddei, M. Tetrahedron Lett. 2003, 44, 5327; (b) Lukevics, E.; Dirnens, V.; Kemme,
A.; Popelis, J. J. Organomet. Chem. 1996, 521, 235; Compound 3c: (c) Kolokol’tseva,
I. G. J. Gen. Chem. USSR1970, 40, 2605;Compound4c:(d)Freudenberg, K.;Stoll, W.
Liebigs Ann. Chem. 1924, 440, 38; (e) Auwers, K. V.; Heimke, P. Liebigs Ann. Chem.
1927, 458, 186; (f) Vecchio, G. L.; Crisafulli, M.; Aversa, M. C. Tetrahedron Lett.
1966, 7, 1909; (g) Nagarajan, K.; Rajagoplan, P. Tetrahedron Lett. 1966, 7, 5525.
21. CCDC 701669 contains the supplementary crystallographic data for this letter.
These data can be obtained free of charge from The Cambridge Crystallographic
metal catalysts, there is no metal carbene complex thus no
D
2-isox-
azoline formation, and nitrosopyrrolizine product formed through
the cycloaddition between nitrosoalkene and diazo compounds.
In summary, reaction of nitrosoalkene with a diazo compound
can proceed smoothly in the presence of an inorganic base and/
or metal catalyst to provide unique products,
D
2-isoxazoline and
1-nitroso-4,5-dihydropyrazole derivatives, in modest yields. The
reaction may be useful for developing metal-catalyzed asymmetric
synthesis of
D
2-isoxazolines.
Acknowledgments
We thank Prof. Arnold L. Rheingold at University of California,
San Diego for providing the X-ray crystal structure of compound 4c0.
Supplementary data
Synthetic, spectroscopic, and X-ray diffraction details (PDF, CIF).
This material is available free of charge via the Internet. Crystallo-
graphic data (excluding structure factors) for the structure in this
letter have been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication nos. CCDC. Copies of
the data can be obtained, free of charge, on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-
22. 1, 3-migration of nitroso group in the ON–X–CH@X systems (X = O, S, Se, NH,
CH2) has been reported: Avakyan, V. E.; Kletskii, M. E.; Minyaev, R. M. Russ. J.
Org. Chem. 2005, 41, 1467.