Page 7 of 9
Journal of the American Chemical Society
oxidation of organic molecules at lower overpotential: accessing broader
Corresponding Author
functional group compatibility with electron-proton transfer mediators.
Acc. Chem. Res. 2020, 53, 561-574. (f) Horn, E. J.; Rosen, B. R.; Baran,
P. S. Synthetic organic electrochemistry: an enabling and innately
sustainable method. ACS cent. Sci. 2016, 2, 302-308. (g) Ackermann, L.
Metalla-electrocatalyzed C-H activation by earth-abundant 3d metals and
beyond. Acc. Chem. Res. 2020, 53, 84-104. (h) Tang, S.; Liu, Y.; Lei, A.
Electrochemical oxidative cross-coupling with hydrogen evolution: a
green and sustainable way for bond formation. Chem 2018, 4, 27-45. (i)
Sperry, J. B.; Wright, D. L. The application of cathodic reductions and
anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev.
2006, 35, 605-621. (j) Xiong, P.; Xu, H.-C. Chemistry with
electrochemically generated N-centered radicals. Acc. Chem. Res. 2019,
52, 3339-3350. (k) Jiang, Y.; Xu, K.; Zeng, C. Use of electrochemistry in
the synthesis of heterocyclic structures. Chem. Rev. 2018, 118, 4485-4540.
(l) Jing, Q.; Moeller, K. D. From molecules to molecular surfaces.
exploiting the interplay between organic synthesis and electrochemistry.
Acc. Chem. Res. 2020, 53, 135-143.
(4) (a) Yang, Y. Z.; Song, R. J.; Li, J. H. Intermolecular anodic oxidative
cross-dehydrogenative C(sp3)-N bond-coupling reactions of xanthenes
with azoles. Org. Lett. 2019, 21, 3228-323. (b) Lin, M.-Y.; Xu, K.; Jiang,
Y.-Y.; Liu, Y.-G.; Sun, B.-G.; Zeng, C.-C. Intermolecular electrochemical
C(sp3)-H/N-H cross-coupling of xanthenes with N-alkoxyamides: radical
pathway mediated by ferrocene as a redox catalyst. Adv. Synth. Catal.
2018, 360, 1665-1672. (c) Morofuji, T.; Shimizu, A.; Yoshida, J. I. Direct
C–N coupling of imidazoles with aromatic and benzylic compounds via
electrooxidative C–H functionalization. J. Am. Chem. Soc. 2014, 136,
4496-4499. (d) Wu, J.; Zhou, Y.; Zhou, Y.; Chiang, C.-W.; Lei, A.
Electro-oxidative C(sp3)–H amination of azoles via intermolecular
oxidative C(sp3)–H/N–H cross-coupling. ACS Catal. 2017, 7, 8320-8323.
(e) Rafiee, M.; Wang, F.; Hruszkewycz, D. P.; Stahl, S. S. N-
hydroxyphthalimide-mediated electrochemical iodination of methylarenes
and comparison to electron-transfer-initiated C-H functionalization. J. Am.
Chem. Soc. 2018, 140, 22-25. (f) Karkas, M. D. Electrochemical strategies
for C-H functionalization and C-N bond formation. Chem. Soc. Rev. 2018,
47, 5786-5865. (g) Wang, P.; Yang, Z.; Wu, T.; Xu, C.; Wang, Z.; Lei, A.
Electrochemical oxidative C(sp3)-H/N-H cross-coupling for N-mannich
bases with hydrogen evolution. ChemSusChem 2019, 12, 3073-3077. (h)
Bensadat, A.; Bodennec, G.; Laurent, E.; Tardivel, R. Fluoration anodique
dans le chlorure de methylene (polymethyl- et vinylbenzenes). J. Fluorine
Chem. 1982, 20, 333-340. (i) Wan, Z.; Wang, D.; Yang, Z.; Zhang, H.;
Wang, S.; Lei, A. Electrochemical oxidative C(sp3)–H azolation of
lactams under mild conditions. Green Chem. 2020, 22, 3742-3747.
(5) (a) Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Zhu, C.
Metal-free alcohol-directed regioselective heteroarylation of remote
unactivated C(sp3)–H bonds. Nat. Commun. 2018, 9. 3343. (b) Dauncey, E.
M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D.
Photoinduced remote functionalisations by iminyl radical promoted C− C
and C− H bond cleavage cascades. Angew. Chem. Int. Ed. 2018, 57, 744-
748. (c) Deng, H. P.; Zhou, Q.; Wu, J. Microtubing‐reactor‐assisted
aliphatic C− H functionalization with HCl as a hydrogen‐atom‐transfer
catalyst precursor in conjunction with an organic photoredox catalyst.
van der Wal, K.; Ravelli, D.; Nuno, M.; Fagnoni, M.; Guthrie, D.; Sun, Y.;
Noel, T. C(sp3)-H functionalizations of light hydrocarbons using
decatungstate photocatalysis in flow. Science 2020, 369, 92-96.
(6) (a) Bosque, I.; Magallanes, G.; Rigoulet, M.; Kärkäs, M. D.;
Stephenson, C. R. Redox catalysis facilitates lignin depolymerization.
ACS cent. Sci. 2017, 3, 621-628. (b) Tateno, H.; Iguchi, S.; Miseki, Y.;
Sayama, K. Photo‐electrochemical C− H bond activation of cyclohexane
using a WO3 photoanode and visible light. Angew. Chem. Int. Ed. 2018,
57, 11238-11241. (c) Yan, H.; Hou, Z. W.; Xu, H. C.
1
2
3
4
5
6
7
8
*aiwenlei@whu.edu.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by the National Natural Science
Foundation of China (21520102003, 21702152) and the Hubei
Province Natural Science Foundation of China (2017CFA010).
The Program of Introducing Talents of Discipline to Universities
of China (111 Program) is also appreciated.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
DEDICATION
This paper is dedicated to P.H. Dixneuf for his meaningful
contribution to organometallic chemistry and catalysis.
REFERENCES
(1) (a) Karimov, R. R.; Hartwig, J. F. Transition‐metal‐catalyzed
selective functionalization of C(sp3)− H bonds in natural products. Angew.
Chem. Int. Ed. 2018, 57, 4234-4241. (b) Xie, J.; Pan, C.; Abdukader, A.;
2014, 43, 5245-5256. (c) Park, Y.; Kim, Y.; Chang, S. Transition metal-
catalyzed C− H amination: scope, mechanism, and applications. Chem.
Rev. 2017, 117, 9247−9301. (d) Müller, P.; Fruit, C. Enantioselective
catalytic aziridinations and asymmetric nitrene insertions into C−H bonds.
Chem. Rev. 2003, 103, 2905−2920. (e) Collet, F.; Dodd, R. H.; Dauban, P.
Catalytic C−H amination: recent progress and future directions. Chem.
Commun. 2009, 14, 5061−5074. (f) Che, C. M.; Lo, V. K. Y.; Zhou, C. Y.;
Huang, J. S. Selective functionalisation of saturated C–H bonds with
metalloporphyrin catalysts. Chem. Soc. Rev. 2011, 40, 1950-1975. (g)
Gephart, R. T.; Warren, T. H. Copper-catalyzed sp3 C–H amination.
Organometallics 2012, 31, 7728-7752. (h) Roizen, J. L.; Harvey, M. E.;
Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the
oxidation of aliphatic C−H bonds. Acc. Chem. Res. 2012, 45, 911− 922. (i)
Singh, R.; Mukherjee, A. Metalloporphyrin catalyzed C-H amination. ACS
Catal. 2019, 9, 3604-3617. (j) Zhu, C.; Zeng, H.; Chen, F.; Yang, Z.; Cai,
Y.; Jiang, H. Intermolecular C(sp3)-H amination promoted by internal
oxidants: synthesis of trifluoroacetylated hydrazones. Angew. Chem. Int.
Ed. 2018, 57, 17215-17219. (k) Xue, Q.; Xie, J.; Li, H.; Cheng, Y.; Zhu, C.
Metal-free, highly efficient organocatalytic amination of benzylic C-H
bonds. Chem. Commun. 2013, 49, 3700-3702. (l) Wang, C. S.; Wu, X. F.;
Dixneuf, P. H.; Soule, J. F. Copper-catalyzed oxidative dehydrogenative
C(sp3)-H bond amination of (cyclo)alkanes using NH-heterocycles as
amine sources. ChemSusChem 2017, 10, 3075-3082. (m) Tran, B. L.; Li,
B.; Driess, M.; Hartwig, J. F. Copper-catalyzed intermolecular amidation
and imidation of unactivated alkanes. J. Am. Chem. Soc. 2014, 136,
2555−2563. (n) Lee, G. S.; Won, J.; Choi, S.; Baik, M. H.; Hong, S. H.
Synergistic activation of amides and hydrocarbons for direct C(sp3)-H
acylation enabled by metallaphotoredox catalysis. Angew. Chem. Int. Ed.
2020, 59, 2-12. (o) Kato, T.; Maruoka, K. Design of bowl-shaped N-
hydroxyimide derivatives as new organoradical catalysts for site-selective
C(sp3)-H bond functionalization reactions. Angew. Chem. Int. Ed. 2020,
59, 14261–14264.
(2) (a) Bosnidou, A. E.; Muñiz, K. Intermolecular radical C(sp3)−H
amination under iodine catalysis. Angew. Chem. Int. Ed. 2019, 58, 7485 –
7489. (b) Nasrallah, A.; Boquet, V.; Hecker, A.; Retailleau, P.; Darses, B.;
Dauban, P. Catalytic enantioselective intermolecular benzylic C(sp3)-H
amination. Angew. Chem. Int. Ed. 2019, 58, 8192-8196. (c) Hazelard, D.;
Nocquet, P.-A.; Compain, P. Catalytic C–H amination at its limits:
challenges and solutions. Org. Chem. Front. 2017, 4, 2500-2521.
(3) (a) Milton, R. D.; Minteer, S. D. Nitrogenase bioelectrochemistry for
synthesis applications. Acc. Chem. Res. 2019, 52, 3351-3360. (b) Jutand,
A. Contribution of electrochemistry to organometallic catalysis. Chem.
Rev. 2008, 108, 2300-2347. (c) Siu, J. C.; Fu, N.; Lin, S. Catalyzing
electrosynthesis: a homogeneous electrocatalytic approach to reaction
discovery. Acc. Chem. Res. 2020, 53, 547-560. (d) Jiao, K. J.; Xing, Y. K.;
Yang, Q. L.; Qiu, H.; Mei, T. S. Site-selective C-H functionalization via
synergistic use of electrochemistry and transition metal catalysis. Acc.
Chem. Res. 2020, 53, 300-310. (e) Wang, F.; Stahl, S. S. Electrochemical
Photoelectrochemical C−
H
alkylation of heteroarenes with
organotrifluoroborates. Angew. Chem. Int. Ed. 2019, 58, 4592-4595. (d)
Wang, F.; Stahl, S. S. Merging photochemistry with electrochemistry:
functional‐group tolerant electrochemical amination of C(sp3)−H bonds.
Angew. Chem. Int. Ed. 2019, 58, 6385-6390. (e) Huang, H.; Strater, Z. M.;
Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H.
Electrophotocatalysis with a trisaminocyclopropenium radical dication.
Angew. Chem. Int. Ed. 2019, 131, 3452-13456. (f) Zhang, L.; Liardet, L.;
Luo, J.; Ren, D.; Grätzel, M.; Hu, X. Photoelectrocatalytic arene C–H
amination. Nat. Catal. 2019, 2, 366. (g) Huang, H.; Lambert, T. H.
Electrophotocatalytic SNAr reactions of unactivated aryl fluorides at
ambient temperature and without base. Angew. Chem. Int. Ed. 2020, 59,
7
ACS Paragon Plus Environment