Published on Web 12/05/2003
Hydroxy- and Silyloxy-Substituted TEMPO Derivatives for the
Living Free-Radical Polymerization of Styrene and n-Butyl
Acrylate: Synthesis, Kinetics, and Mechanistic Studies
Christoph Alexander Knoop and Armido Studer*
Contribution from the Department of Chemistry, Philipps-UniVersity Marburg,
35032 Marburg, Germany
Received August 15, 2003; E-mail: studer@mailer.uni-marburg.de
Abstract: The synthesis of new 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) styryl derivatives as mediators
for the living free-radical polymerization is described. Two of the R-methyl groups at the 2- and 6-position
of the parent TEMPO styryl alkoxyamine have been replaced by hydroxymethyl and silyloxymethyl groups.
To further increase the steric hindrance around the alkoxyamine oxygen atom, the remaining two methyl
groups have been substituted with larger ethyl groups. Styrene polymerizations using hydroxy-substituted
TEMPO derivatives are fast, but are not well-controlled. As previously shown for other OH-substituted
alkoxyamines, intramolecular H-bonding leads to an acceleration of the C-O bond homolysis and, hence,
to an acceleration of the polymerization process. However, the OH groups also increase the alkoxyamine
decomposition rate constant. The kinetics of the C-O bond homolysis have been determined using EPR
spectroscopy. Decomposition studies have been conducted with the aid of 1H NMR spectroscopy. In contrast
to the OH-substituted alkoxyamines, highly hindered silyloxy-substituted TEMPO alkoxyamines turned out
to be excellent mediator/initiators for the controlled styrene polymerization. Polystyrene with Mn of up to
80 000 g/mol and narrow polydispersities (PDI) has been prepared using the new alkoxyamines. Reactions
have been conducted at 105 °C; however, even at 90 °C controlled but slow polymerizations can be
achieved. Furthermore, and more importantly, poly(n-butyl acrylates) with narrow PDIs (<1.15) have been
prepared at 105 °C with the new alkoxyamines. Controlled acrylate polymerization can be conducted at
temperatures as low as 90 °C. The silylated alkoxyamines presented belong to the most efficient initiator/
mediators for the controlled acrylate polymerization known to date. The effect of the addition of free nitroxide
on the acrylate polymerization is discussed. Moreover, the synthesis of diblock copolymers with narrow
PDIs is described.
radical, respectively, is of great importance in these processes.4,5
We6 and others7,8 have shown that H-bonding in nitroxides leads
to a stabilization of the nitroxide, and this in turn alters the
equilibrium constant between the alkoxyamine and the corre-
Introduction
Nitroxide-mediated polymerizations (NMP),1 atom transfer
radical polymerizations (ATRP),2 and RAFT polymerizations3
provide polymers with polydispersities (PDI) below the theoreti-
cal limit for a conventional radical polymerization (1.5). The
NMP process is controlled by the persistent radical effect (PRE)4
and is based on the reversible formation of a dormant
alkoxyamine from the corresponding nitroxide and the chain-
growing polymer radical. The equilibrium in this controlled
radical polymerization lies far on the side of the dormant
alkoxyamine, ensuring a low concentration of free radicals
during the polymerization. The equilibrium constant between
the nitroxide-capped polymer and the free nitroxide and polymer
(5) (a) Goto, A.; Terauchi, T.; Fukuda, T.; Miyamoto, T. Macromol. Rapid
Commun. 1997, 18, 673-681. (b) Fukuda, T.; Goto, A. Macromol. Rapid
Commun. 1997, 18, 683-688. (c) Skene, W. G.; Belt, S. T.; Conolly, T.
J.; Hahn, P.; Scaiano, J. C. Macromolecules 1998, 31, 9103-9105. (d)
Ohno, K.; Tsujii, Y.; Miyamoto, T.; Fukuda, T.; Goto, M.; Kobayashi, K.;
Akaike, T. Macromolecules 1998, 31, 1064-1069. (e) Bon, S. A. F.;
Chambard, G.; German, A. L. Macromolecules 1999, 32, 8269-8276. (f)
Goto, A.; Fukuda, T. Macromol. Chem. Phys. 2000, 201, 2138-2142. (g)
Fischer, H.; Souaille, M. Chimia 2001, 55, 109-113. (h) Marque, S.;
Fischer, H.; LeMercier, C.; Tordo, P. Macromolecules 2000, 33, 4403-
4410. (i) Drockenmuller, E.; Catala, J.-M. Macromolecules 2002, 35, 2461-
2466. (j) Bertin, D.; Chauvin, F.; Marque, S.; Tordo, P. Macromolecules
2002, 35, 3790-3791. (k) LeMercier, C.; Acerbis, S.; Bertin, D.; Chauvin,
F.; Gigmes, D.; Guerret, O.; Lansalot, M.; Marque, S.; Le Moigne, F.;
Fischer, H.; Tordo, P. Macromol. Symp. 2002, 182, 225-247. (l) Cun-
ningham, M. F.; Tortosa, K.; Lin, M.; Keoshkerian, B.; Georges, M. K. J.
Polym. Sci., Part A: Polym. Chem. 2002, 40, 2828-2841. Work on other
nitroxide structures: (m) Cresidio, S. P.; Aldabbagh, F.; Busfield, W. K.;
Jenkins, I. D.; Thang, S. H.; Zayas-Holdsworth, C.; Zetterlund, P. B. J.
Polym. Sci., Part A: Polym. Chem. 2001, 39, 1232-1241. (n) Blomberg,
S.; Ostberg, S.; Harth, E.; Bosman, A. W.; Van Horn, B.; Hawker, C. J. J.
Polym. Sci., Part A: Polym. Chem. 2002, 40, 1309-1320. (o) Dervan, P.;
Aldabbagh, F.; Zetterlund, P. B.; Yamada, B. J. Polym. Sci., Part A: Polym.
Chem. 2003, 41, 327-334.
(1) (a) Solomon, D. H.; Rizzardo, E.; Cacioli, P. U.S. Patent 4,581,429, 1985;
P. Eur. Pat. Appl. 135280, 1985 (Chem. Abstr. 1985, 102, 221335q). (b)
Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K.
Macromolecules 1993, 26, 2987-2988. For a review, see: (c) Hawker, C.
J.; Bosman, A. W.; Harth, E. Chem. ReV. 2001, 101, 3661-3688.
(2) (a) Matyjaszewski, K.; Xia, J. Chem. ReV. 2001, 101, 2921-2990. (b)
Kamigaito, M.; Ando, T.; Sawamoto, M. Chem. ReV. 2001, 101, 3689-
3746.
(3) Barner-Kowollik, C.; Davis, T. P.; Heuts, J. P. A.; Stenzel, M. H.; Vana,
P.; Whittaker, M. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 365-
375.
(4) Fischer, H. Chem. ReV. 2001, 101, 3581-3610.
(6) Marque, S.; Fischer, H.; Baier, E.; Studer, A. J. Org. Chem. 2001, 66,
1146-1156.
9
10.1021/ja037948o CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 16327-16333
16327