was rendered inert to thiols, similar to its stability toward
attack at the formamidine carbon in hydrolysis.2
The reaction of formamidine ureas and thiols is catalyzed
by base and gave the best yields in THF or CH3CN. Table
1 outlines the scope of the reaction with 1-(tert-butylimino-
ment,7 and various procedures involving phosgene8 or other
highly energetic reagents.9 More recently, a variety of
methods have been reported, including aminolysis of cyclic
thioxocarbonates,10 carbonate-mediated addition of alkyl
halide to carbon disulfide,11 elaboration of activated car-
bamoyl derivatives5a,12 and thiocarbonates,13 O-to-S allylic
rearrangement,14
re-
arrangement of N-alkyl carbonimidodithionates,15 various
carbonylation and thiocarbonylation reactions,16 and thiola-
tion of isocyanates,4k the last being the most general. The
process described here is notable for its convenience and
lack of hazardous reagents.
Table 1. Reactions of 1b with Thiolsa
Given the differing apparent sites of attack of amines and
thiols on thiolcarbamate electrophiles, the internal competi-
tion offered by a nucleophile containing both groups was of
interest. As shown in Scheme 3, L-cysteine ethyl ester
hydrochloride and formamidine 1b gave enantiomerically
pure thiazoline17 (+)-4 and 1,3-dimethylurea as the only
observed products, the former in 78% isolated yield. The
absence of racemization was confirmed by reduction to the
known18 hydroxymethyl derivative. The nature of the product
allows us to propose that amine substitution at the forma-
midine carbon (path a) is initially favored, followed by
intramolecular cyclization of thiol (or thiolate) in the
formamidine urea intermediate 5. It is difficult to propose a
reasonable mechanism for the formation of 4 from initial
thiol addition to 1b (path b) to give intermediate 6. A similar
reaction is observed in the interaction of acyclic 1,2-diamines
with formamidine ureas. Thus, enantiomerically pure (R,R)-
1,2-diphenylethylenediamine 7 smoothly afforded the cor-
responding chiral imidazoline 8 (Scheme 3),19 presumably
entry
1
R
% yielda
product
p-X-C6H4 (X ) H, Me, OMe,
Br, Cl, OH)
66-70
2a -f
2
3
4
5
6
7
8
9
10
2-naphthyl
CH2CH2Ph
CH2Ph
n-C6H13
68
69
67
71
62
70
61
63
67
2g
2h
2i
2j
2k
2l
2m
2n
2o
CH2CH2CH2Cl
CH2CH2CO2Et
(CH2)4OH
CH2CH2NH(n-C4H9)
(CH2)8SH
a Yields are reported for pure products after column chromatography
and are based on 1b.
methyl)-1,3-dimethyl urea hydrochloride 1b, which is con-
veniently available in large quantities.1 Triethylamine (1
equiv) was used to neutralize the starting hydrochloride salt.
The process allows the introduction of side chains bearing
other reactive functionalities, including halide, ester, alcohol,
amine, and thiol groups (entries 6-10).
The biological properties of thiolcarbamates have received
much attention,4 including their use in herbicides,4b-f
pesticides,4g-i antifertility agents,4j and antivirals.4k The
cleavage of the acyl-S bond of thiolcarbamates by protic
solvents and nucleophiles is well-known5,7a and may be
related to the biological activity of these compounds.4k Early
routes to thiolcarbamates included acid-mediated addition
of alcohols to thiocyanates,6 the Newman-Kwart rearrange-
(6) (a) Riemschneider, R.; Wojahn, F. Pharmazie 1949, 4, 460-462.
(b) Riemschneider, R. J. Am. Chem. Soc. 1956, 78, 844-847. (c) Kochansky,
J. P.; Wright, F. C. J. Economic Entomol. 1985, 78, 599-606. (d) Isobe,
T.; Ishikawa, T. J. Org. Chem. 1999, 64, 5832-5835.
(7) (a) Newman, M. S.; Karnes, H. A. J. Org. Chem. 1966, 31, 3980-
3984. (b) Kwart, H.; Evans, E. R. J. Org. Chem. 1966, 31, 410-413. (c)
Beaulieu, F.; Snieckus, V. Synthesis 1992, 112-118.
(8) (a) Eilingsfield, H.; Mo¨bius, L. Chem. Ber. 1965, 98, 1293-1307.
(b) Walter, W.; Bode, K.-D. Angew. Chem., Int. Ed. Engl. 1967, 6, 281-
293.
(9) (a) Akiba, K.; Inamoto, N. J. Chem. Soc., Chem. Commun. 1973,
13-14. (b) Adamski, R. J.; Numajiri, S.; Poe, R.; Spears, L. J. J. Med.
Chem. 1971, 14, 1244-1244.
(10) Faissat, L.; Chavis, C.; Monte´ro, J.-L.; Lucar, M. J. Chem. Soc.,
Perkin Trans. 1 2002, 1253-1259.
(11) Salvatore, R. N.; Sahab, S.; Jung, K. W. Tetrahedron Lett. 2001,
42, 2055-2058.
(3) Vincent, S.; Mons, S.; Lebeau, L.; Mioskowski, C. Tetrahedron Lett.
1997, 38, 7527-7530.
(12) (a) Mizuno, T.; Nishiguchi, I.; Okushi, T.; Hiroshima, T. Tetrahe-
dron Lett. 1991, 32, 6867-6868. (b) Mizuno, T.; Kawanishi, A.; Nishiguchi,
I.; Hirashima, T. Chem. Express 1991, 6, 997-1000.
(4) (a) Nice, H. R. Org. React. 1962, 12, 57-100 and references therein.
(b) Tilles, H. J. Am. Chem. Soc. 1959, 81, 714-727. (c) Ishikawa, K.;
Okubo, I.; Kuwatsuka, S. Agr. Biol. Chem. 1973, 37, 165-173. (d)
Miyashita, Y.; Ohsako, H.; Takayama, C.; Sasaki, S. Quant. Struct.-Act.
Relat. 1992, 11, 17-22. (e) Cheng, H. M.; Hwang, D. F. Chem. Ecol. 1996,
12, 91-101. (f) Rubin, B. Weed Crop Resistance Herbicides 1997, 39-
50. (g) Lindgren, B.; Lindgren, G.; Artursson, E.; Puu, G.; Fredriksson, J.;
Andersson, M. J. Enzyme Inhib. 1985, 1, 1-11. (h) Kochansky, J.;
Feldmesser, J. J. Nematol. 1989, 21, 158-163. (i) Kochansky, J.; Cohen,
C. F. J. Agric. Entomol. 1990, 7, 293-304. (j) Wachter, M. P. (Ortho
Pharmaceutical Corp.). US Patent 4066681, 1978. (k) Goel, A.; Mazur, S.
J.; Fattah, R. J.; Hartman, T. L.; Turpin, J. A.; Huang, M.; Rice, W. G.;
Appella, E.; Inman, J. K. Bioorg. Med. Chem. Lett. 2002, 12, 767-770.
(5) (a) Anbazhagan, M.; Rakeeb, A.; Deshmukh, A. S.; Rajappa, S.
Tetrahedron Lett. 1998, 39, 3609-3612. (b) Villemin, D.; Hachemi, M. L.
M. Synth. Commun. 1996, 26, 2461-2471. (c) Sebok, P.; Timar, T.; Eszenyl,
T.; Patonay, T. J. Org. Chem. 1994, 59, 6318-6321. (d) Bourne, N.;
Williams, A.; Douglas, K. T.; Penkava, T. R. J. Chem. Soc., Perkin Trans.
2 1984, 1827-1832. (e) Ewing, S. P.; Lockshon, D.; Jencks, W. P. J. Am.
Chem. Soc. 1980, 102, 3072-3084.
(13) Harusawa, S.; Osaki, H.; Fujii, H.; Yoneda, R.; Kurihara, T.
Tetrahedron 1992, 48, 9433-9450.
(14) Gais, H.-H.; Bo¨hme, A. J. Org. Chem. 2002, 67, 1153-1161.
(15) Reddy, T. I.; Bhawal, B. M.; Rajappa, S. Tetrahedron Lett. 1992,
33, 2857-2860.
(16) (a) Grisley, D. W., Jr.; Stephens, J. A. J. Org. Chem. 1961, 26,
3568-3574. (b) Jacob, J.; Reynolds, K. A.; Jones, W. D. Organometallics
2001, 20, 1028-1031. (c) Mizuno, T.; Takahashi, J.; Ogawa, A. Tetrahedron
2003, 59, 1327-1331. (d) Mizuno, T.; Nishiguchi, I. N.; Sonoda, N.
Tetrahedron 1994, 50, 5669-5680. (e) Koch, P. Tetrahedron Lett. 1975,
25, 2087-2088.
(17) For examples of the reactivity of thiazolines, see: (a) Barton, M.
A.; Kenner, G. W.; Sheppard, R. C. J. Chem. Soc. C 1966, 1061-1065.
(b) Barrett, A. G. M.; Sturgess, M. A. J. Org. Chem. 1987, 52, 3940-
3941. (c) Schmitz, W. D.; Romo, D. Tetrahedron Lett. 1996, 37, 4857-
4860.
(18) Almqvist, F.; Guillaume, D.; Hultgren, S. J.; Marshall, G. R.
Tetrahedron Lett. 1998, 39, 2293-2294.
44
Org. Lett., Vol. 6, No. 1, 2004