Communication
ChemComm
Laboratory of Synthetic Chemistry, the External Cooperation
Program of Chinese Academy of Sciences (CAS-GJHZ200816),
NSFC (21272197 and 21102162) and the CAS-Croucher Funding
Scheme for Joint Laboratories.
Notes and references
1 For selected reviews, see: (a) B. S. Lane and K. Burgess, Chem. Rev.,
2003, 103, 2457; (b) T. Punniyamurthy, S. Velusamy and J. Iqbal,
Chem. Rev., 2005, 105, 2329; (c) S.-I. Murahash and D. Zhang, Chem.
Soc. Rev., 2008, 37, 1490; (d) Z. Shi, C. Zhang, C. Tang and N. Jiao,
Chem. Soc. Rev., 2012, 41, 3381.
2 (a) C. Krebs, D. G. Fujimori, C. T. Walsh and J. M. Bollinger Jr, Acc.
Chem. Res., 2007, 40, 484; (b) S. Shaik, H. Hirao and D. Kumar, Acc.
Chem. Res., 2007, 40, 532; (c) A. Gunay and K. H. Theopold, Chem.
Rev., 2010, 110, 1060; (d) W. Nam, Y.-M. Lee and S. Fukuzumi, Acc.
Chem. Res., 2014, 47, 1146.
Fig. 2 ESI-MS spectrum of [Fe(TF4DMAP)O]+ in the absence (top) and
presence of 18O–H2O (500 equiv., bottom).
3 C. Bolm, J. Legros, J. Le Paih and L. Zani, Chem. Rev., 2004,
104, 6217.
4 For selected examples, see: (a) M. S. Chen and M. C. White, Science,
2007, 318, 783; (b) H. Egami and T. Katsuki, J. Am. Chem. Soc., 2009,
131, 6082; (c) M. S. Chen and M. C. White, Science, 2010, 327, 566;
(d) T. Kunisu, T. Oguma and T. Katsuki, J. Am. Chem. Soc., 2011,
133, 12937.
5 (a) J. Smidt, W. Hafner, R. Jira, R. Sieber, J. Sedlmeier and A. Sabel,
Angew. Chem., Int. Ed. Engl., 1962, 1, 80; (b) H. Pellissier, P.-Y. Michellys
and M. Santelli, Tetrahedron, 1997, 53, 10733; (c) J. Tsuji, Palladium
Reagents and Catalysts: Innovation in Organic Synthesis, Wiley, New York,
1998; (d) J. Muzart, Tetrahedron, 2007, 63, 7505; (e) J. Guo and P. Teo,
Dalton Trans., 2014, 43, 6952.
6 (a) G. Dong, P. Teo, Z. K. Wickens and R. H. Grubbs, Science, 2011,
333, 1609; (b) P. Teo, Z. K. Wickens, G. Dong and R. H. Grubbs, Org.
Lett., 2012, 14, 3237; (c) Z. K. Wickens, B. Morandi and R. H. Grubbs,
Angew. Chem., Int. Ed., 2013, 52, 11257; (d) Z. K. Wickens, K. Skakuj,
B. Morandi and R. H. Grubbs, J. Am. Chem. Soc., 2014, 136, 890.
7 (a) J. Chen and C.-M. Che, Angew. Chem., Int. Ed., 2004, 43, 4950;
(b) G. Jiang, J. Chen, H.-Y. Thu, J.-S. Huang, N. Zhu and C.-M. Che,
Angew. Chem., Int. Ed., 2008, 47, 6638.
Fig. 3 Plausible mechanism for the E–I reaction.
+
formulated as [(F20TPPꢀ )FeIVQO]+ (Fig. S8, ESI†). Its signal
˜
intensity was largely diminished in the presence of 50 equiv.
styrene (Fig. S9, ESI†) and it showed 80% 18O incorporation with
500 equiv. H218O (Fig. S10, ESI†). These results are similar to
those observed with the TF4DMAP system, revealing the likely
8 Reviews of iron-catalysed reactions: A. Correa, O. G. Mancheno and
C. Bolm, Chem. Soc. Rev., 2008, 37, 1108.
9 G.-Q. Chen, Z.-J. Xu, C.-Y. Zhou and C.-M. Che, Chem. Commun.,
2011, 47, 10963. For a related iron(II) catalysed EI reaction with
PhIO as terminal oxidant, see: A. D. Chowdhury, R. Ray and
G. K. Lahiri, Chem. Commun., 2012, 48, 5497.
10 For selected Fe(F20TPP)X catalysed epoxidation, see: (a) W. Nam,
M. H. Lim, S. Y. Oh, J. H. Lee, H. J. Lee, S. K. Woo, C. Kim and
W. Shin, Angew. Chem., Int. Ed., 2000, 39, 3646; (b) W. Nam, S. Y. Oh,
Y. J. Sun, J. Kim, W. K. Kim, S. K. Woo and W. Shin, J. Org. Chem.,
2003, 68, 7903.
+
involvement of [(Porꢀ )FeIVQO]+ as reaction intermediate. Treatment
of [FeIII(TF4DMAP)OTf] with excess H2O2 in CH2Cl2 for 15 min led to
broadening and red-shift of the lowest energy absorption peak
maximum to 665 nm, which is similar to the absorption of
porphyrin p-cation radical (Fig. S11, ESI†).11
11 (a) J. T. Groves and Y. Watanabe, J. Am. Chem. Soc., 1986, 108, 507;
(b) H. Fujii, J. Am. Chem. Soc., 1993, 115, 4641.
A plausible mechanism for tandem epoxidation–isomerization
(E–I) pathway is proposed (Fig. 3). Firstly, [Fe(Por)]+ is converted to
[Fe(O)(Por)]+ which reacts with aryl alkenes to give the corresponding
12 (a) K. Suda, K. Baba, S. Nakajima and T. Takanami, Tetrahedron
Lett., 1999, 40, 7243; (b) K. Suda, K. Baba, S. Nakajima and
T. Takanami, Chem. Commun., 2002, 2570.
epoxides, and the regenerated [Fe(Por)]+ complex induces isomeriza- 13 Reviews: (a) ref. 1c; (b) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (c) W.-J.
Yoo and C.-J. Li, Top. Curr. Chem., 2010, 292, 281; (d) C. Liu, H. Zhang,
W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780; (e) A. E. Wendlandt,
A. M. Suess and S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062.
tion of styrene oxides to phenylacetaldehydes.
In summary, using [FeIII(TF4DMAP)OTf] as catalyst, anti-
Markovnikov oxidation of terminal aryl alkenes to aldehydes via 14 For the oxidation with other oxidants, see: (a) M. E. Kuehne and
P. J. Seaton, J. Org. Chem., 1985, 50, 4790; (b) D. H. Hunter, J. S. Racok,
A. W. Rey and Y. Zea-Ponce, J. Org. Chem., 1988, 53, 1278; (c) H. Wu,
F. Xue, X. Xiao and Y. Qin, J. Am. Chem. Soc., 2010, 132, 14052;
tandem epoxidation–isomerization reaction and transformation of
N-methyl aryl tertiary amines to formamides with H2O2 as a
terminal oxidant under mild conditions has been achieved with
moderate to good product yields.
(d) J. Danielsson and P. Somfai, Org. Lett., 2014, 16, 784.
15 For a relative work, see: (a) S. Murata, M. Miura and M. Nomura,
J. Org. Chem., 1989, 54, 4700; (b) S. Murata, K. Suzuki, A. Tamatani,
M. Miura and M. Nomura, J. Chem. Soc., Perkin Trans. 1, 1992, 1387.
We acknowledge the financial support from the Innovation
and Technology Commission (HKSAR, China) to the State Key 16 W. Nam and J. S. Valentine, J. Am. Chem. Soc., 1993, 115, 1772.
12672 | Chem. Commun., 2014, 50, 12669--12672
This journal is ©The Royal Society of Chemistry 2014