Published on Web 12/13/2003
Enantioselective Total Synthesis of Erogorgiaene:
Applications of Asymmetric Cu-Catalyzed Conjugate
Additions of Alkylzincs to Acyclic Enones
Richard R. Cesati, III, Judith de Armas, and Amir H. Hoveyda*
Contribution from the Department of Chemistry, Merkert Chemistry Center, Boston College,
Chestnut Hill, Massachusetts 02467
Received September 18, 2003; E-mail: amir.hoveyda@bc.edu
Abstract: The first enantioselective synthesis of erogorgiaene (1), an inhibitor of mycobacterium tuberculosis,
is disclosed. The total synthesis highlights the utility of asymmetric conjugate additions (ACA) of alkylzincs
to acyclic R,â-unsaturated ketones catalyzed by peptidic phosphine ligands and (CuOTf)2‚C6H6. Moreover,
several critical attributes of this catalytic C-C bond-forming reaction are illustrated in the context of the
total synthesis; these include the significance of various structural features of the amino acid-based chiral
ligands and the chiral ligand’s effectiveness in reactions involving achiral and chiral substrates. In addition,
the total synthesis showcases some of the special properties of nonphosphine Ru complex 3 as a highly
effective catalyst for olefin cross-metathesis.
enones.6,7 Thus, in the course of this study we demonstrate that
(i) Cu-catalyzed ACA can be carried out reliably on multigram
scale to obtain the desired acyclic â-alkylcarbonyls in high yield
and with excellent enantioselectivity and (ii) Cu-catalyzed ACA
can be used to control relative stereochemistry in instances
Introduction
During the past several years, efforts in these laboratories
have been focused on the discovery and development of new
catalytic enantioselective C-C bond-forming reactions.1
A
critical aspect of these investigations has been to utilize such
asymmetric methods in the total syntheses of biologically active
molecules.2 Through these studies, we explore the utility and
determine the limitations of different processes, as well as
identify ways in which various catalytic protocols can be used
sequentially3 to access a target molecule efficiently.4
It was in this context that we set out to develop an efficient
route for the enantioselective total synthesis of antimycobacterial
agent erogorgiaene 1.5 Our synthesis strategy was devised so
(2) For example, see: (a) Xu, Z.; Johannes, C. W.; Houri, A. F.; La, D. S.;
Cogan, D. A.; Hofilena, G. E.; Hoveyda, A. H. J. Am. Chem. Soc. 1997,
119, 10302-10316. (b) Johannes, C. W.; Visser, M. S.; Weatherhead G.
S.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 8340-8347. (c) Murphy,
K. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 4690-4691. (d) Deng,
H.; Jung, J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2003, 125, 9032-9034.
(3) For an early application of this concept (sequential use of catalytic
transformations in a total synthesis), see: Houri, A. F.; Xu, Z.; Cogan, D.
A.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 2943-2944.
(4) For examples of enantioselective total syntheses where catalytic reactions
play a prominent role, see: (a) Han, X.; Corey, E. J. Org. Lett. 1999, 1,
1871-1872. (b) Fox, M. E.; Li, C.; Mariano, J. P., Jr.; Overman, L. E. J.
Am. Chem. Soc. 1999, 121, 5467-5480. (c) Lebel, H.; Jacobsen, E. N. J.
Org. Chem. 1998, 63, 9624-9625. For a review on the utility of catalytic
enantioselective reactions in target oriented synthesis, see: (d) Hoveyda,
A. H. In Stimulating Concepts in Chemistry; Vogtle, F., Fraser Stoddart,
J., Shibasaki, M., Eds.; Wiley-VCH: Weinheim, Germany, 2000; pp 145-
162.
(5) Rodriguez, A. D.; Ramirez, C. J. Nat. Prod. 2001, 64, 100-102.
(6) (a) Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc. 2002,
124, 779-781. (b) Hird, A. W.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2003, 42, 1276-1279. For related transformations involving cyclic
substrates, see: (c) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am.
Chem. Soc. 2001, 123, 755-756. (d) Luchaco-Cullis, C. A.; Hoveyda, A.
H. J. Am. Chem. Soc. 2002, 124, 8192-8193. (e) Degrado, S. J.; Mizutani,
H.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 13362-13363.
(7) The uniqueness of amino acid-based ligands such as 2 (refs 6a,b) is tied to
the fact that the large majority of Cu-catalyzed asymmetric conjugate
additions of alkylmetals to enones involve cyclic systems, and nearly all
the reported cases regarding acyclic substrates (predominantly chalcones)
relate to reactions only with Et2Zn. For Cu-catalyzed enantioselective
conjugate addition of MeMgI to an acyclic enone (<10-76% ee), see:
(a) van Klaveren, M.; Lambert, F.; Eijkelkamp, J. F. M.; Grove, D. M.;
van Koten, G. Tetrahedron Lett. 1994, 35, 6135-6138. For Cu-catalyzed
asymmetric conjugate addition of Me3Al to acyclic enones (80-93% ee),
see: (b) Fraser, P. K.; Woodward, S. Chem.-Eur. J. 2003, 9, 776-783.
For related reviews, see: (c) Krause, N.; Hoffmann-Roder, A. Synthesis
2001, 171-196. (d) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002,
3221-3236. (e) Feringa, B. L.; Naasz, R.; Imbos, R.; Arnold, L. A. In
Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Wein-
heim, Germany, 2002, pp 224-258.
that it would benefit from the unique ability of amino acid-
based chiral phosphine ligands, such as 2, to effect Cu-catalyzed
asymmetric conjugate additions (ACA) of alkylzincs to acyclic
(1) (a) Hoveyda, A. H.; Morken, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35,
1262-1284. (b) Hoveyda, A. H.; Heron, N. M. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer-Verlag: Berlin, 1999; pp 431-454. (c) Hoveyda, A. H. In
Handbook of Combinatorial Chemistry; Nicolaou, K. C., Hanko, R.,
Hartwig, W., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp 991-
1016. (d) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003,
42, 4592-4633.
9
96
J. AM. CHEM. SOC. 2004, 126, 96-101
10.1021/ja0305407 CCC: $27.50 © 2004 American Chemical Society