LETTER
Novel Applications of the Schöllkopf Chiral Auxiliary
2399
In fact, brief inspection of Table 1, clearly indicates that almost quantitative b-lactam ring closure (one-pot con-
tert-BuLi should be the base of choice for the deprotona- version of 3 to 4).15 Work is in progress on the conversion
tion–alkylation of substituted Schöllkopf’s chiral auxilia- of 2e and 2f (Table 1) to the corresponding 3,4-trisub-
ries 1 (Scheme 1),9 an operation which is expected to stituted b-lactams.
serve well in the enantioselective construction of quater-
nary stereocenters.10
Acknowledgment
Table 1 Deprotonation–Alkylation of Schöllkopf Chiral Auxiliary
1a with Various Electrophilic Bromides
This work was supported by the research program Kapodistrias
(70/4/6490) administered by the University of Athens. Support by
St. Peter’s College (Department of Chemistry) is also gratefully
acknowledged. We are warmly thankful to our colleague Professor
Athanasios Yiotakis for sustained encouragement and advice.
1. n-BuLi or t-BuLi
THF, –78 °C
H3CO
N
H3CO
N
N
OCH3
N
2. RBr
THF, –78 °C
OCH3
R
CH3
0 °C
References
1a
2
(1) (a) Edwards, P. D.; Bernstein, P. R. Med. Res. Rev. 1994, 14,
127. (b) Mascaretti, O. A.; Boschetti, C. E.; Danelon, G. O.;
Mata, E. G.; Roveri, O. A. Curr. Med. Chem. 1995, 1, 441.
(c) Wilmouth, R. C.; Kassamaly, S.; Westwood, N. J.;
Sheppard, R. J.; Clatridge, T. D.; Aplin, R. T.; Wright, P. A.;
Pritchard, G. J.; Schofield, C. J. Biochemistry 1999, 38,
7989.
(2) (a) Burnett, D. A.; Caplen, M. A.; Davis, H. R. Jr.; Burrier,
R. E.; Clader, J. W. J. Med. Chem. 1994, 37, 1733.
(b) Chen, L.-Y.; Zaks, A.; Chackalamanil, S.; Dugar, S. J.
Org. Chem. 1996, 61, 8341.
Entry R-Br
1
Product
n-BuLi
Yield (%) Yield (%)
tert-BuLi
2a
2b
2c
2d
2e
24
51
63
54
44
72
83
90
71
58
BnO2C
Br
2
3
4
5
Ph
Br
Br
Br
Ph
H3C
(3) (a) For a recent highlight, see: Magriotis, P. A. Angew.
Chem. Int. Ed. 2001, 40, 4377. (b) For catalytic
H
BnO2C
Br
enantioselective methods published prior to and
6
2f
27
35
H
CH3
Br
inadvertently omitted from this highlight, see: Doyle, M. P.;
Protopopova, M. N.; Winchester, W. R.; Daniel, K. L.
Tetrahedron Lett. 1992, 33, 7819. (c) Doyle, M. P.; Kalinin,
A. V. Synlett 1995, 1075. (d) Watanabe, N.; Anada, M.;
Hashimoto, S.; Ikegami, S. Synlett 1994, 1031. (e) Anada,
M.; Hashimoto, S. Tetrahedron Lett. 1998, 39, 9063.
(f) Miura, M.; Enna, M.; Okuro, K.; Nomura, M. J. Org.
Chem. 1995, 60, 4099. (g) For catalytic, enantioselective b-
lactam synthetic methodology published after this highlight,
see: (h) Shintani, R.; Fu, G. C. Angew. Chem. Int. Ed. 2003,
42, 3921. (i) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc.
2002, 124, 1578. (j) Cordova, A.; Watanabe, S.; Tanaka, F.;
Notz, W.; Barbas, C. F. III J. Am. Chem. Soc. 2002, 124,
1866. (k) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2002,
124, 4572. (l) Shah, M. H.; France, S.; Lectka, T. Synlett
2003, 1937. (m) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc.
Chem. Res. 2003, 36, 10.
BnO2C
Specifically, products 2a–f were obtained in much higher
yield when the deprotonation of 1a was performed with
tert-BuLi as opposed to n-BuLi.8,9 Interestingly, alkyla-
tion of 1a with (R)-2-bromopropionic acic benzyl ester
(entry 5, Table 1)11 was much more efficient than that em-
ploying benzyl (S)-2-bromopropionate (entry 6, Table 1),
a result representing a case of kinetic resolution which
was corroborated by the fact that the alkylation yield of 1a
using tert-BuLi and racemic benzyl-2-bromopropionate
was 45%.12
Hydrolysis of the alkylated 2,5-diketopiperazine 2a
(Table 1) followed by sulfonylation (Pmc-Cl, Et3N)13,14 of
the derived a,b-amino diester produced a,b-arylsulfona-
mide diester 3 (Scheme 1) in very good overall yield
(75%). Catalytic hydrogenolysis of 3 and cyclodehydra-
tion of the resulting b-arylsulfonamide acid provided the
desired b-lactam 4 (R1 = CH3, Scheme 1) in 91% yield
and high optical purity (>95%).
(4) Seyden-Penne, J. Chiral Auxiliaries and Ligands in
Asymmetric Synthesis; John Wiley and Sons: New York,
1995.
(5) (a) Schöllkopf, U. Topics in Current Chemistry 1983, 109,
65. (b) Schöllkopf, U. Pure Appl. Chem. 1983, 55, 1799.
(6) Tanner, D.; Somfai, P. Tetrahedron 1988, 44, 613.
(7) (a) Schöllkopf, U.; Westphalen, K.-O.; Schröder, J.; Horn,
K. Liebigs Ann. Chem. 1988, 781. (b) Ma, C.; Liu, X.; Li,
X.; Flippen-Anderson, J.; Yau, S.; Cook, J. M. J. Org. Chem.
2001, 66, 4525.
(8) The diastereomeric excess of 2 is estimated to be >95% since
the minor diastereomer could not be detected by 1H NMR
analysis of the crude reaction mixture.
(9) Schöllkopf and coworkers have previously reported the use
of tert-BuLi for the deprotonation-alkylation of 1d (Scheme
1) with benzyl bromide in 75% yield, but they stated that use
of n-BuLi gave the same result (compare with entry 2, Table
1): Schöllkopf, U.; Busse, U.; Lonsky, R.; Hinrichs, R.
Liebigs Ann. Chem. 1986, 2150.
In summary a new enantioselective b-lactam synthesis
employing the Schöllkopf chiral auxiliary has been dem-
onstrated. The success of this new method giving rise to
b-lactams possessing a C-4 quaternary stereocenter, lies
in the development of an effective deprotonation protocol
for substituted Schöllkopf chiral auxiliaries 1 (Scheme 1)
employing t-BuLi instead of the widely accepted for this
purpose n-BuLi.5,7 Furthermore, the efficiency of this new
methodology relies on the one-pot conversion of 2 to 3
(Scheme 1)14 in very good isolated yield as well as on the
Synlett 2003, No. 15, 2398–2400 © Thieme Stuttgart · New York