C O M M U N I C A T I O N S
the adherence to the parabolic relationship is remarkable, consistent
with a correlation of fundamental importance.
Acknowledgment. We gratefully acknowledge the support of
NIH (CA41986) and the Skaggs Institute for Chemical Biology.
We thank Dr. R. Chadha for the X-ray structures.
Supporting Information Available: Full experimental details for
the preparation of 6-15; solvolysis experimental details; tables of first-
order rate constants for 6-15, N-Boc-CBI analogues, and N-aryl-CBI
data; plot of log k vs log IC50 for 6-14; and structure key (PDF). This
References
(1) Chidester, C. G.; Krueger, W. C.; Mizsak, S. A.; Duchamp, D. J.; Martin,
D. G. J. Am. Chem. Soc. 1981, 103, 7629.
(2) Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, K.;
Kawamoto, I.; Tomita, F.; Nakano, H. J. Antibiot. 1988, 41, 1915.
(3) (a) Ichimura, M.; Ogawa, T.; Takahashi, K.; Kobayashi, E.; Kawamoto,
I.; Yasuzawa, T.; Takahashi, I.; Nakano, H. J. Antibiot. 1990, 43, 1037.
(b) Yasuzawa, T.; Muroi, K.; Ichimura, M.; Takahashi, I.; Ogawa, T.;
Takahashi, K.; Sano, H.; Saitoh, Y. Chem. Pharm. Bull. 1995, 43, 378.
(4) Igarashi, Y.; Futamata, K.; Fujita, T.; Sekine, A.; Senda, H.; Naoki, H.;
Furumai, T. J. Antibiot. 2003, 56, 107.
Figure 2. Log k/kH (solvolysis, pH 2) vs σp.
(5) (a) Boger, D. L.; Johnson, D. S. Angew. Chem., Int. Ed. Engl. 1996, 35,
1438. For earlier reviews, see: (b) Boger, D. L. Acc. Chem. Res. 1995,
28, 20. (c) Boger, D. L.; Johnson, D. S. Proc. Natl. Acad. Sci., U.S.A.
1995, 92, 3642. (d) Boger, D. L. Chemtracts: Org. Chem. 1991, 4, 329.
(6) Warpehoski, M. A.; Hurley, L. H. Chem. Res. Toxicol. 1988, 1, 315.
(7) Parrish, J. P.; Kastrinsky, D. B.; Wolkenberg, S. E.; Tagarashi, Y.; Boger,
D. L. J. Am. Chem. Soc. 2003, 125, 10971.
(8) Boger, D. L.; Garbaccio, R. M. Bioorg. Med. Chem. 1997, 5, 263.
(9) Boger, D. L.; Garbaccio, R. M. Acc. Chem. Res. 1999, 32, 1043.
(10) Wolkenberg, S. W.; Boger, D. L. Chem. ReV. 2002, 102, 2477.
(11) (a) Boger, D. L.; Ishizaki, T. Tetrahedron Lett. 1990, 31, 793. (b) Boger,
D. L.; Yun, W. J. Am. Chem. Soc. 1994, 116, 5523. (c) Boger, D. L.;
Yun, W. J. Am. Chem. Soc. 1994, 116, 7996.
(12) Exceptions have been noted and typically constitute unreactive derivatives
(too stable) that fail to alkylate DNA (not active). These now may be fit
onto the parabolic relationships described herein. See: (a) Boger, D. L.;
Santilla´n, A., Jr.; Searcey, M.; Jin, Q. J. Am. Chem. Soc. 1998, 120, 11554.
(b) Castedo, L.; Delamano, J.; Enjo, J.; Fernandez, J.; Gravalos, D. G.;
Leis, R.; Lopez, C.; Marcos, C. F.; Rios, A.; Tojo, G. J. Am. Chem. Soc.
2001, 123, 5102 and ref 22.
(13) Boger, D. L.; Munk, S. A.; Ishizaki, T. J. Am. Chem. Soc. 1991, 113,
2779.
(14) Review: Boger, D. L.; Boyce, C. W.; Garbaccio, R. M.; Goldberg, J.
Chem. ReV. 1997, 97, 787.
Figure 3. Relationship between reactivity (solvolysis k, pH 3) and cytotoxic
potency (L1210).
(15) (a) Boger, D. L.; Ishizaki, T.; Kitos, P. A.; Suntornwat, O. J. Org. Chem.
1990, 55, 5823. (b) Parrish, J. P.; Kastrinsky, D. B.; Stauffer, F.; Hedrick,
M. P.; Hwang, I.; Boger, D. L. Bioorg. Med. Chem. 2003, 11, 3815 and
refs cited therein. (c) Drost, K. J.; Cava, M. P. J. Org. Chem. 1991, 56,
2240. (d) Aristoff, P. A.; Johnson, P. D. J. Org. Chem. 1992, 57, 6234.
(16) (a) Louie, J.; Hartwig, J. F. Tetrahedron Lett. 1995, 36, 3609. (b) Guram,
A. S.; Rennels, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. 1995, 34,
1348.
) 90 nM). Moreover, when this correlation between reactivity
(-log k, pH 3) and cytotoxic activity (-log IC50, L1210) is plotted
along with prior data for the more reactive N-acyl-CBI derivatives
and its analogues, it established a well-defined parabolic relationship
between reactivity and biological potency (Figure 3). This plot
incorporates not only the N-aryl derivatives disclosed herein, but
all N-Boc derivatives of the alkylation subunits that we have
examined to date,21 including a class of unusually stable C3 halogen
CBI derivatives 16-1921,22 and a series of simple N-acyl CBI
derivatives 20-23.21,11 The parabolic relationship establishes that
the compounds should possess sufficient stability to reach their
biological target (DNA), yet maintain sufficient reactivity to alkylate
DNA upon reaching the biological target and, importantly, defines
this optimal balance of stability and reactivity.23
The variations that appear in this correlation may be attributed
not only to the inherent error in the cytotoxic assay especially with
data that has been collected intermittently over a 15-year period
but also to structural differences in the derivatives that impact
features beyond reactivity (e.g., cell penetration and distribution,
DNA binding affinity). Even without accounting for such variables,
(17) (a) Barton, D. H. R.; Finet, J.-P.; Khamsi, J. Tetrahedron Lett. 1987, 28,
887. (b) Review: Elliott, G. I.; Konopelski, J. P. Tetrahedron 2001, 57,
5683.
(18) (Cy)2P(DMAbp) ) 2-dicyclohexylphosphino-2′-(N, N-dimethylamino)-
biphenyl. Tomori, H.; Fox, J. M.; Buchwald, S. L. J. Org. Chem. 2000,
65, 5334.
(19) Prepared by treatment of corresponding aryl bromide (1.0 equiv) with
n-BuLi (1.1 equiv) in THF at -78 °C for 1 h, followed by addition of a
THF solution of BiCl3 (0.33 equiv). Solvent removal and recrystallization
from toluene afforded pure Ar3Bi. For a representative example, see:
Hassan, A.; Breeze, S. R.; Courtenay, S.; Deslippe, C.; Wang, S.
Organometallics 1996, 15, 5614.
(20) The X-ray structures have been deposited with the Cambridge Crystal-
lographic Data Centre: 7 (CCDC 216387), 9 (CCDC 216392), and 13
(CCDC 216386).
(21) Structures, references, and data for these compounds are provided in the
Supporting Information.
(22) Boger, D. L.; Brunette, S. R.; Garbaccio, R. M. J. Org. Chem. 2001, 66,
5163.
(23) The unnatural enantiomers follow an analogous parabolic relationship,
albeit with 5-10-fold less potent cytotoxic activity. See Supporting
Information Figure S2.
JA038162T
9
J. AM. CHEM. SOC. VOL. 126, NO. 1, 2004 81