C O M M U N I C A T I O N S
Table 3. Catalytic Disilylation of Various Alkylidene Malonates (1)a
yield. Further investigations into the mechanism of this reaction
and the development of asymmetric variants of this process are
currently under way and will be reported in due course.
yield
(%)
yield
(%)
entry
R
product
entry
R
product
1
2
3
4
5
6
7
Ph
Cl-Ph
4-F-Ph
4-NO2Ph
2-furyl
67
87
53
0
80
67
64
3a
4
5
6
7
8
9
1-napthyl
2-napthyl
n-pentyl
(CH2)2Ph
Me
84
10
11
12
13
14
15
16
Acknowledgment. This work has been supported by North-
western University. J.F.L. thanks Northwestern for an Undergradu-
ate Summer Research Grant. We thank Wacker Biochem Co.
(Specialties Division, Adrian, MI) for kindly supplying organosili-
con reagents and Professor Thomas Meade and Alisha Taylor (NU)
for assistance with shared instrumentation.
84
10
11
12
13
14
60c
37c
40c
4-MeOPh
2-MeOPh
8
9
NHCOCF3 57
CO2Et
d
-
a All reactions were heated at 100 °C for 24-60 h. Reported yields are
after chromatographic purification. b [(CuOTf)2‚benzene]. c 15 mol % [CuOTf],
30 mol % pyridine. d Product de-silylates upon hydrolysis.
Supporting Information Available: Experimental procedures and
spectral data for all new compounds (PDF). This material is available
Once the best conditions had been identified, the scope of the
reaction was explored (eq 3, Table 3). With aryl alkylidene
malonates, our reaction generates â-silyl diesters in good yield. It
is tolerant of both electron-rich and electron-poor aromatic rings.
However, the incorporation of a nitro group (entry 4) surprisingly
affords no desired product.10 With slightly higher catalyst loadings,
reactions employing alkyl alkylidene malonates generate â-silyl
diesters in moderate yields (entries 10-12).11 Notably, a â-silyl-
â-amino ester can be generated in moderate yield when â-trifluo-
roacetamido alkylidene malonate is utilized as a substrate (entry
13, 57% yield).12
A plausible catalytic cycle for this reaction is depicted in Scheme
1. Interaction between the Lewis base (DMF) and the disilane
produces an activated electron-rich silicon species that undergoes
transmetalation to copper(I) triflate. The nucleophilic activation of
organosilanes has been observed by 29Si NMR.13 The copper
intermediate I undergoes conjugate addition to alkylidene malonate
(2), and the resulting copper enolate II is trapped by the silyl triflate/
silyl Lewis base adduct, thus regenerating the copper(I) catalyst.
Pyridine presumably acts as a ligand for copper throughout the
catalytic cycle.
References
(1) (a) Weber, W. P. Silicon Reagents for Organic Synthesis; Springer-
Verlag: Berlin, 1983. (b) Colvin, E. W. Silicon Reagents in Organic
Synthesis; Academic Press: Orlando, FL, 1988. (c) Fleming, I.; Barbero,
A.; Walter, D. Chem. ReV. 1997, 97, 2063-2192.
(2) (a) Perlmetter, P. Conjugate Addition Reactions in Organic Synthesis;
Pergamon Press: Oxford, 1992. (b) Ager, D. J.; Fleming, I.; Patel, S. K.
J. Chem. Soc., Perkin Trans. 1 1981, 2520-2526. (c) Crump, R. A. N.
C.; Fleming, I.; Urich, C. J. J. Chem. Soc., Perkin Trans. 1 1994, 701-
706 and references therein. (d) Lipshutz, B. H.; Sclafani, J. A.; Takanami,
T. J. Am. Chem. Soc. 1998, 120, 4021-4022. (d) Taylor, R. J. K.
Organocopper Reagents: A Practical Approach; Oxford University
Press: Oxford, 1994.
(3) (a) Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1988, 110,
5579-5581. (b) Ito, H.; Ishizuka, T.; Tateiwa, J.; Sonoda, M.; Hosomi,
A. J. Am. Chem. Soc. 1998, 120, 11196-11197. (c) Ogoshi, S.; Tomiyasu,
S.; Morita, M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 11598-11599.
(4) (a) Hiyama, T.; Obayashi, M.; Mori, I.; Nozaki, H. J. Org. Chem. 1983,
48, 912-914. (b) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem.
ReV. 1993, 93, 1371-1448. (c) Tanabe, Y.; Okumura, H.; Maeda, A.;
Murakami, M. Tetrahedron Lett. 1994, 35, 8413-8414. (d) Gilman, H.;
Lichtenwalter, G. D. J. Am. Chem. Soc. 1958, 80, 608-611. For reviews
of these processes, see: (e) Sharma, H. K.; Pannell, K. H. Chem. ReV.
1995, 95, 1351-1374. (f) Horn, K. A. Chem. ReV. 1995, 95, 1317-1350.
(g) Suginome, M.; Ito, Y. Chem. ReV. 2000, 100, 3221-3256.
(5) Ito, H.; Ishizuka, T.; Tateiwa, J.; Sonoda, M.; Hosomi, A. J. Am. Chem.
Soc. 1998, 120, 11196-11197.
(6) (a) Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 1889-
1897. (b) Cohen, T.; Ruffner, R. J.; Shull, D. W.; Fogel, E. R.; Falck, J.
R. Organic Syntheses; John Wiley & Sons: New York; Collect. Vol. 6,
pp 737-743. Omission of [CuOTf] results in no reaction.
(7) Yields for 3a are substantially lower than conversion would indicate. See
Supporting Information for details regarding this observation.
(8) Phosphines such as (t-Bu)3P, Cy3P, Ph3P, and 2-di-(tert-butylphosphino)-
biphenyl give no conversion.
Scheme 1. Proposed Catalytic Cycle for Disilyation Reaction
(9) Hexaphenyldisilane and tetraphenyldimethyldisilane afford no product.
(10) The deleterious effect of nitro groups on [CuOTf]-catalyzed reactions has
been observed: Galliford, C. V.; Beenen, M. A.; Nguyen, S. T.; Scheidt,
K. A. Org. Lett. 2003, 5, 3487-3490.
(11) This is primarily due to the instability of the starting material at elevated
reaction temperatures.
(12) For the only other report of a simple R-silyl-R-amino ester, see: Fleming,
I.; Marangon, E.; Roni, C.; Russell, M. G.; Chamudis, S. T. Chem.
Commun. 2003, 200-201.
The synthetic utility of our â-silyl diester products is highlighted
in eq 5. The decarboxylation of 3a followed by a highly diaste-
reoselective alkylation (dr g 20:1) affords R-substituted-â-silyl ester
17 in 62% for the two steps.14 A straightforward oxidation produces
â-hydroxy ester 18 in excellent yield (89%) without elimination.15
In conclusion, a copper(I)-catalyzed disilylation of alkylidene
malonates has been described. The reaction is broad in scope,
utilizes commercially available disilanes and ligands, and provides
a new catalytic route to synthetically useful â-silyl diesters in good
(13) Organosilanes in the presence of Lewis bases generate highly electron
rich silyl species: Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res.
2000, 33, 432-440 and references therein. The 29Si NMR spectrum of
(Me2PhSi)2 with 10 equiv of DMF (toluene-d8) has a distinct broad peak
at -117 ppm. The 29Si NMR signal of (Me2Ph)2Si (toluene-d8) is -19
ppm.
(14) Panek, J. S.; Beresis, R.; Xu, F.; Yang, M. J. Org. Chem. 1991, 56, 7341-
7344 and references therein.
(15) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J.
J. Chem. Soc., Perkin Trans. 1 1995, 317-337.
JA038530T
9
J. AM. CHEM. SOC. VOL. 126, NO. 1, 2004 85