Molecular Pharmaceutics
ARTICLE
excellent predictor of poor clinical outcome in prostate cancer. Cancer
Res. 2004, 64 (15), 5232–6.
(7) Le Page, C.; Koumakpayi, I. H.; Alam-Fahmy, M.; Mes-Masson,
A. M.; Saad, F. Expression and localisation of Akt-1, Akt-2 and Akt-3
correlate with clinical outcome of prostate cancer patients. Br. J. Cancer
2006, 94 (12), 1906–12.
(8) Mulholland, D. J.; Dedhar, S.; Wu, H.; Nelson, C. C. PTEN and
GSK3beta: key regulators of progression to androgen-independent
prostate cancer. Oncogene 2006, 25 (3), 329–37.
Kantoff, P.; Loda, M. Her-2-neu expression and progression toward
androgen independence in human prostate cancer. J. Natl. Cancer Inst.
2000, 92 (23), 1918–25.
(24) Oman, I. A.; Scher, H.; Drobnjak, M.; Morris, M.; Fazzari, M.;
Cordon-Cardo, C. HER-2/neu membrane overexpression in prostate
cancer (PC) Proc. Am. Assoc. Cancer Res. 2000, 41, abstract 4572.
(25) Morris, M. J.; R., V.; Kelly, W. K.; Slovin, S. F.; Kenneson, K. I.;
Osman, I A phase II trial of herceptin alone and with taxol for the treatment
of prostate cancer. Proc. ASCO 2000, 19, 330.
(9) Steck, P. A.; Pershouse, M. A.; Jasser, S. A.; Yung, W. K.; Lin, H.;
Ligon, A. H.; Langford, L. A.; Baumgard, M. L.; Hattier, T.; Davis, T.;
Frye, C.; Hu, R.; Swedlund, B.; Teng, D. H.; Tavtigian, S. V. Identifica-
tion of a candidate tumour suppressor gene, MMAC1, at chromosome
10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 1997,
15 (4), 356–62.
(10) Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.; Puc,
J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S. H.; Giovanella,
B. C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler, M. H.; Parsons, R.
PTEN, a putative protein tyrosine phosphatase gene mutated in human
brain, breast, and prostate cancer. Science 1997, 275 (5308), 1943–7.
(11) Lei, Q.; Jiao, J.; Xin, L.; Chang, C. J.; Wang, S.; Gao, J.; Gleave,
M. E.; Witte, O. N.; Liu, X.; Wu, H. NKX3.1 stabilizes p53, inhibits AKT
activation, and blocks prostate cancer initiation caused by PTEN loss.
Cancer Cell 2006, 9 (5), 367–78.
(26) Ziada, A.; Barqawi, A.; Glode, L. M.; Varella-Garcia, M.;
Crighton, F.; Majeski, S.; Rosenblum, M.; Kane, M.; Chen, L.; Crawford,
E. D. The use of trastuzumab in the treatment of hormone refractory
prostate cancer; phase II trial. Prostate 2004, 60 (4), 332–7.
(27) Watt, K. W.; Lee, P. J.; M’Timkulu, T.; Chan, W. P.; Loor, R.
Human prostate-specific antigen: structural and functional similarity with
serine proteases. Proc. Natl. Acad. Sci. U.S.A. 1986, 83 (10), 3166–70.
(28) Shaun, J. Inhibition Of Phosphoinositide 3-Kinase Beta. Inter-
national Patent 2004, WO/2004/016607.
(29) Agarwal, S.; Boddu, S. H.; Jain, R.; Samanta, S.; Pal, D.; Mitra,
A. K. Peptide prodrugs: improved oral absorption of lopinavir, a HIV
protease inhibitor. Int. J. Pharm. 2008, 359 (1ꢀ2), 7–14.
(30) Denmeade, S. R.; Nagy, A.; Gao, J.; Lilja, H.; Schally, A. V.;
Isaacs, J. T. Enzymatic activation of a doxorubicin-peptide prodrug by
prostate-specific antigen. Cancer Res. 1998, 58 (12), 2537–40.
(31) Kumar, S. K.; Roy, I.; Anchoori, R. K.; Fazli, S.; Maitra, A.;
Beachy, P. A.; Khan, S. R. Targeted inhibition of hedgehog signaling by
cyclopamine prodrugs for advanced prostate cancer. Bioorg. Med. Chem.
2008, 16 (6), 2764–8.
(12) Wang, S.; Garcia, A. J.; Wu, M.; Lawson, D. A.; Witte, O. N.; Wu,
H. Pten deletion leads to the expansion of a prostatic stem/progenitor cell
subpopulation and tumor initiation. Proc. Natl. Acad. Sci. U.S.A. 2006, 103
(5), 1480–5.
(13) Cairns, P.; Okami, K.; Halachmi, S.; Halachmi, N.; Esteller, M.;
Herman, J. G.; Jen, J.; Isaacs, W. B.; Bova, G. S.; Sidransky, D. Frequent
inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res.
1997, 57 (22), 4997–5000.
(14) Yoshimoto, M.; Cunha, I. W.; Coudry, R. A.; Fonseca, F. P.;
Torres, C. H.; Soares, F. A.; Squire, J. A. FISH analysis of 107 prostate
cancers shows that PTEN genomic deletion is associated with poor
clinical outcome. Br. J. Cancer 2007, 97 (5), 678–85.
(32) Garsky, V. M.; Lumma, P. K.; Feng, D. M.; Wai, J.; Ramjit,
H. G.; Sardana, M. K.; Oliff, A.; Jones, R. E.; DeFeo-Jones, D.;
Freidinger, R. M. The synthesis of a prodrug of doxorubicin designed
to provide reduced systemic toxicity and greater target efficacy. J. Med.
Chem. 2001, 44 (24), 4216–24.
(33) Wang, L.; Liu, B.; Schmidt, M.; Lu, Y.; Wels, W.; Fan, Z.
Antitumor effect of an HER2-specific antibody-toxin fusion protein on
human prostate cancer cells. Prostate 2001, 47 (1), 21–8.
(15) Jia, S.; Liu, Z.; Zhang, S.; Liu, P.; Zhang, L.; Lee, S. H.; Zhang, J.;
Signoretti, S.; Loda, M.; Roberts, T. M.; Zhao, J. J. Essential roles of
PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature
2008, 454 (7205), 776–9.
(16) Zhu, Q.; Youn, H.; Tang, J.; Tawfik, O.; Dennis, K.; Terranova,
P. F.; Du, J.; Raynal, P.; Thrasher, J. B.; Li, B. Phosphoinositide 3-OH
kinase p85alpha and p110beta are essential for androgen receptor
transactivation and tumor progression in prostate cancers. Oncogene
2008, 27 (33), 4569–79.
(17) Kong, D.; Yamori, T. Phosphatidylinositol 3-kinase inhibitors:
promising drug candidates for cancer therapy. Cancer Sci. 2008, 99 (9),
1734–40.
(18) Jackson, S. P.; Schoenwaelder, S. M.; Goncalves, I.; Nesbitt,
W. S.; Yap, C. L.; Wright, C. E.; Kenche, V.; Anderson, K. E.; Dopheide,
S. M.; Yuan, Y.; Sturgeon, S. A.; Prabaharan, H.; Thompson, P. E.; Smith,
G. D.; Shepherd, P. R.; Daniele, N.; Kulkarni, S.; Abbott, B.; Saylik, D.;
Jones, C.; Lu, L.; Giuliano, S.; Hughan, S. C.; Angus, J. A.; Robertson,
A. D.; Salem, H. H. PI 3-kinase p110beta: a new target for antithrom-
botic therapy. Nat. Med. 2005, 11 (5), 507–14.
(19) Shaywitz, A. J.; Courtney, K. D.; Patnaik, A.; Cantley, L. C.
PI3K enters beta-testing. Cell Metab. 2008, 8 (3), 179–81.
(20) Bi, L.; Okabe, I.; Bernard, D. J.; Nussbaum, R. L. Early
embryonic lethality in mice deficient in the p110beta catalytic subunit
of PI 3-kinase. Mamm. Genome 2002, 13 (3), 169–72.
(21) Canobbio, I.; Stefanini, L.; Cipolla, L.; Ciraolo, E.; Gruppi, C.;
Balduini, C.; Hirsch, E.; Torti, M. Genetic evidence for a predominant
role of PI3Kbeta catalytic activity in ITAM- and integrin-mediated
signaling in platelets. Blood 2009, 114 (10), 2193–6.
(22) Scher, H. I. HER2 in prostate cancer--a viable target or innocent
bystander? J. Natl. Cancer Inst. 2000, 92 (23), 1866–8.
(23) Signoretti, S.; Montironi, R.; Manola, J.; Altimari, A.; Tam, C.;
Bubley, G.; Balk, S.; Thomas, G.; Kaplan, I.; Hlatky, L.; Hahnfeldt, P.;
(34) Agus, D. B.; Scher, H. I.; Higgins, B.; Fox, W. D.; Heller, G.;
Fazzari, M.; Cordon-Cardo, C.; Golde, D. W. Response of prostate
cancer to anti-Her-2/neu antibody in androgen-dependent and -inde-
pendent human xenograft models. Cancer Res. 1999, 59 (19), 4761–4.
(35) Karasseva, N. G.; Glinsky, V. V.; Chen, N. X.; Komatireddy, R.;
Quinn, T. P. Identification and characterization of peptides that bind
human ErbB-2 selected from a bacteriophage display library. J. Protein
Chem. 2002, 21 (4), 287–96.
(36) Kumar, S. R.;Quinn, T. P.;Deutscher, S. L. Evaluationofan111In-
radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor
expressing breast carcinomas. Clin. Cancer Res. 2007, 13 (20), 6070–9.
(37) Mitsuoka, K.; Miyoshi, S.; Kato, Y.; Murakami, Y.; Utsumi, R.;
Kubo, Y.; Noda, A.; Nakamura, Y.; Nishimura, S.; Tsuji, A. Cancer
detection using a PET tracer, 11C-glycylsarcosine, targeted to Hþ/
peptide transporter. J. Nucl. Med. 2008, 49 (4), 615–22.
(38) Terada, T.; Sawada, K.; Irie, M.; Saito, H.; Hashimoto, Y.; Inui, K.
Structural requirements for determining the substrate affinity of peptide
transporters PEPT1 and PEPT2. Pfluegers Arch. 2000, 440 (5), 679–84.
(39) Ayral-Kaloustian, S.; Gu, J.; Lucas, J.; Cinque, M.; Gaydos, C.;
Zask, A.; Chaudhary, I.; Wang, J.; Di, L.; Young, M.; Ruppen, M.;
Mansour, T. S.; Gibbons, J. J.; Yu, K. Hybrid inhibitors of phosphatidy-
linositol 3-kinase (PI3K) and the mammalian target of rapamycin
(mTOR): design, synthesis, and superior antitumor activity of novel
wortmannin-rapamycin conjugates. J. Med. Chem. 2010, 53 (1), 452–9.
(40) Goldstein, D.; Gofrit, O.; Nyska, A.; Benita, S. Anti-HER2
cationic immunoemulsion as a potential targeted drug delivery system
for the treatment of prostate cancer. Cancer Res. 2007, 67 (1), 269–75.
(41) Hughes, B. Antibody-drug conjugates for cancer: poised to
deliver? Nat. Rev. Drug Discovery 2010, 9 (9), 665–7.
(42) Tai, W.; Mahato, R.; Cheng, K. The role of HER2 in cancer
therapy and targeted drug delivery. J. Controlled Release 2010, 146 (3),
264–75.
911
dx.doi.org/10.1021/mp200007b |Mol. Pharmaceutics 2011, 8, 901–912