110
A.K. Alexander et al. / Journal of Molecular Catalysis B: Enzymatic 78 (2012) 105–110
<50% after 24 h). Biotransformations with CHMOJS666 of terpenones
21a–25a yielded mostly either untouched starting material (22a
and 23a) or complex product mixtures (21a and 24a). The compo-
sition of these mixtures and identity of byproducts was not further
examined within this study. Only (+)-trans-dihydrocarvone 25a
was cleanly converted to abnormal lactone 25c at a low rate.
References
[1] I.A. Mirza, B.J. Yachnin, S. Wang, S. Grosse, H. Bergeron, A. Imura, H.
Iwaki, Y. Hasegawa, P.C.K. Lau, A.M. Berghuis, J. Am. Chem. Soc. 131 (2009)
8848–8854.
[2] H. Leisch, K. Morley, P.C.K. Lau, Chem. Rev. 111 (2011) 4165–4222.
[3] Z. Li, J.B. van Beilen, W.A. Duetz, A. Schmid, A. de Raadt, H. Griengl, B. Witholt,
Curr. Opin. Chem. Biol. 6 (2002) 136–144.
[4] D.E. Torres Pazmin˜o, H.M. Dudek, M.W. Fraaije, Curr. Opin. Chem. Biol. 14 (2010)
3.6. Kinetic resolution of 2-substituted cyclohexanones
138–144.
[5] C. Szolkowy, L.D. Eltis, N.C. Bruce, G. Grogan, ChemBioChem 10 (2009)
1208–1217.
CHMOJS666 catalyzes kinetic resolutions of 2-substituted cyclo-
Racemic compounds 27a–30a are converted to the corresponding
lactones with >99% ee (E > 200). Lactone product 30b could even
be obtained with higher optical purity than has been previously
reported [18]. 2-Methylycylohexanone 26a represents a difficult
substrate for BVMOs, as the best result published so far reached
E = 6 with CHMOAcineto. CHMOJS666 could not significantly improve
this value (E = 7). The larger 2-benzylcycloheptanone 31a was not
converted by the biocatalyst.
[6] D.J. Opperman, M.T. Reetz, ChemBioChem 11 (2010) 2589–2596.
[7] T.E. Mattes, A.K. Alexander, P.M. Richardson, A.C. Munk, C.S. Han, P. Stothard,
N.V. Coleman, Appl. Environ. Microb. 74 (2008) 6405–6416.
[8] W.L. Bin Wan Johari, J.M. Gossett, Remediation of chlorinated and recalcitrant
compounds – 2010, in: Proceedings of the Seventh International Battelle Con-
ference, 2010 (Abstract F-064).
[9] K. Tamura, J. Dudley, M. Nei, S. Kumar, Mol. Biol. Evol. 24 (2007) 1596–1599.
[10] C.M. Burns, Epicentre Forum. 11 (2004) 6–7.
[11] R.S. Mohan, D.L. Whalen, J. Org. Chem. 58 (1993) 2663–2669.
[12] G. Chen, M.M. Kayser, M.D. Mihovilovic, M.E. Mrstik, C.A. Martinez, J.D. Stewart,
New J. Chem. 23 (1999) 827–832.
Faber,
H.
Hönig,
A.
Kleewein,
Selectivity
1.0,
1994.
[14] J. Rehdorf, M.D. Mihovilovic, M.W. Fraaije, U.T. Bornscheuer, Chem. Eur. J. 16
(2010) 9525–9535.
[15] W. Lee, Y. Park, D. Lee, K. Park, J. Seo, Appl. Biochem. Biotech. 123 (2005)
827–836.
[16] N.V. Coleman, T.E. Mattes, J.M. Gossett, J.C. Spain, Appl. Environ. Microb. 68
(2002) 2726–2730.
Although it reached 70% conversion within 24 h, the CHMOJS666
did not proficiently catalyze the kinetic resolution of -acetoxy
ketone 32a (E = 10). Detailed results and preparative information
for this linear ketone substrate can be found in Table S1 [37].
[17] L.K. Jennings, M.M.G. Chartrand, G. Lacrampe-Couloume, B.S. Lollar, J.C. Spain,
J.M. Gossett, Appl. Environ. Microb. 75 (2009) 3733–3744.
[18] N. Berezina, E. Kozma, R. Furstoss, V. Alphand, Adv. Synth. Catal. 349 (2007)
2049–2053.
[19] D.V. Rial, D.A. Bianchi, P. Kapitanova, A. Lengar, J.B. van Beilen, M.D. Mihovilovic,
Eur. J. Org. Chem. 2008 (2008) 1203–1213.
[20] F. Rudroff, J. Rydz, F.H. Ogink, M. Fink, M.D. Mihovilovic, Adv. Synth. Catal. 349
(2007) 1436–1444.
[21] S. Wang, M.M. Kayser, H. Iwaki, P.C.K. Lau, J. Mol. Catal. B: Enzym. 22 (2003)
211–218.
[22] M.D. Mihovilovic, G. Chen, S. Wang, B. Kyte, F. Rochon, M.M. Kayser, J.D. Stewart,
J. Org. Chem. 66 (2001) 733–738.
[23] M.D. Mihovilovic, R. Snajdrova, B. Grötzl, J. Mol. Catal. B: Enzym. 39 (2006)
135–140.
[24] M.D. Mihovilovic, F. Rudroff, B. Grötzl, P. Kapitan, R. Snajdrova, J. Rydz, R. Mach,
Angew. Chem. Int. Ed. 117 (2005) 3675–3679.
[25] R. Snajdrova, I. Braun, T. Bach, K. Mereiter, M.D. Mihovilovic, J. Org. Chem. 72
(2007) 9597–9603.
4. Conclusions
The newly expressed cyclohexanone monooxygenase from the
xenobiotic-degrading Polaromonas sp. strain JS666 exhibits similar
substrate enantiopreference and -selectivity to other CHMO-type
enzymes for the 32 tested ketone substrates. This new expres-
sion system adds to the toolbox of heterologously characterized
CHMOs, aiding future exploration of the effects of sequence vari-
ation on activity and enantioselectivity. The results of this work
appear to contradict one of the current theories of cDCE degrada-
tion in strain JS666, illustrating that more research is necessary
to uncover the mechanisms at work in the dichotomous growth-
coupled/cometabolic cDCE degradation behavior of this strain.
[26] M.D. Mihovilovic, P. Kapitán, Tetrahedron Lett. 45 (2004) 2751–2754.
[27] F. Petit, R. Furstoss, Tetrahedron Asymmetry 4 (1993) 1341–1352.
[28] M.J. Fink, T.C. Fischer, F. Rudroff, H. Dudek, M.W. Fraaije, M.D. Mihovilovic, J.
Mol. Catal. B: Enzym. 73 (2011) 9–16.
[29] M.D. Mihovilovic, P. Kapitán, P. Kapitánová, ChemSusChem 1 (2008) 143–148.
[30] J.D. Stewart, K.W. Reed, C.A. Martinez, J. Zhu, G. Chen, M.M. Kayser, J. Am. Chem.
Soc. 120 (1998) 3541–3548.
[31] S. Wang, M.M. Kayser, V. Jurkauskas, J. Org. Chem. 68 (2003) 6222–6228.
[32] V. Alphand, R. Furstoss, Tetrahedron Asymmetry 3 (1992) 379–382.
[33] P. Cernuchova, M.D. Mihovilovic, Org. Biomol. Chem. 5 (2007) 1715–1719.
[34] D.V. Rial, P. Cernuchova, J.B. van Beilen, M.D. Mihovilovic, J. Mol. Catal. B: Enzym.
50 (2008) 61–68.
Acknowledgments
Funding for this work was provided by the University of Iowa’s
Center for Biocatalysis and Bioprocessing, the Iowa Biotechnology
Byproducts Consortium, and a National Science Foundation Grad-
uate Research Fellowship for A.K.A. D.B. gratefully acknowledges a
postdoctoral fellowship by the Austrian Exchange Service (OeAD)
within the Austria/Czech Republic scientific cooperation program.
M.J.F. is generously funded by EU-FP7 within the project OxyGreen
(Grant# 212281).
[35] V. Alphand, R. Furstoss, S. Pedragosa-Moreau, S.M. Roberts, A.J. Willetts, J. Chem.
Soc. Perkin Trans. 1 (1996) 1867–1872.
[36] J.D. Stewart, K.W. Reed, J. Zhu, G. Chen, M.M. Kayser, J. Org. Chem. 61 (1996)
7652–7653.
[37] J. Rehdorf, A. Lengar, U.T. Bornscheuer, M.D. Mihovilovic, Bioorg. Med. Chem.
Lett. 19 (2009) 3739–3743.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in