Page 5 of 6
Journal of the American Chemical Society
Application to the Synthesis of (±)-Debromoflustramine E. Org.
Lett. 2018, 20, 1122.
Advances in Fluorine Science, Tressaud, A., Ed. Elsevier: 2006; Vol.
2, pp 121; (b) Fujiwara, T.; O’Hagan, D., Successful fluorine-
containing herbicide agrochemicals. J. Fluor. Chem. 2014, 167, 16.
1
2
3
4
5
6
7
8
3. (a) Leung, J. C.; Geary, L. M.; Chen, T.-Y.; Zbieg, J. R.; Krische,
M. J., Direct, Redox-Neutral Prenylation and Geranylation of
Secondary Carbinol C–H Bonds: C4-Regioselectivity in
Ruthenium-Catalyzed C–C Couplings of Dienes to α-Hydroxy
Esters. J. Am. Chem. Soc. 2012, 134, 15700; (b) Zhang, Y. J.; Skucas,
E.; Krische, M. J., Direct Prenylation of Aromatic and α,β-
Unsaturated Carboxamides via Iridium-Catalyzed C−H Oxidative
Addition−Allene Insertion. Org. Lett. 2009, 11, 4248; (c) Luzung,
10.
Günther,
B.;
Günther,
S.,
Über
aromatische
Fluorverbindungen, I.: Ein neues Verfahren zu ihrer Darstellung.
Chem. Ber. 1927, 60, 1186.
11. Finger, G. C.; Kruse, C. W., Aromatic Fluorine Compounds. VII.
Replacement of Aromatic -Cl and -NO2 Groups by -F1,2. J. Am.
Chem. Soc. 1956, 78, 6034.
12. Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T.,
Functionalization of Fluorinated Molecules by Transition-Metal-
Mediated C–F Bond Activation To Access Fluorinated Building
Blocks. Chem. Rev. 2015, 115, 931.
13. Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E., Activation of
Carbon-Fluorine Bonds by Metal Complexes. Chem. Rev. 1994, 94,
373.
14. Amii, H.; Uneyama, K., C−F Bond Activation in Organic
Synthesis. Chem. Rev. 2009, 109, 2119.
15. (a) Eisenstein, O.; Milani, J.; Perutz, R. N., Selectivity of C–H
Activation and Competition between C–H and C–F Bond
Activation at Fluorocarbons. Chem. Rev. 2017, 117, 8710; (b)
Whittlesey, M. K.; Peris, E., Catalytic Hydrodefluorination with
Late Transition Metal Complexes. ACS Catal. 2014, 4, 3152; (c)
Clot, E.; Eisenstein, O.; Jasim, N.; Macgregor, S. A.; McGrady, J. E.;
Perutz, R. N., C−F and C−H Bond Activation of Fluorobenzenes
and Fluoropyridines at Transition Metal Centers: How Fluorine
Tips the Scales. Acc. Chem. Res. 2011, 44, 333; (d) Sabater, S.; Mata,
J. A.; Peris, E., Hydrodefluorination of carbon–fluorine bonds by
the synergistic action of a ruthenium–palladium catalyst. Nat.
Commun. 2013, 4, 2553; (e) Chen, K.; Berg, N.; Gschwind, R.;
König, B., Selective Single C(sp3)–F Bond Cleavage in
Trifluoromethylarenes: Merging Visible-Light Catalysis with
Lewis Acid Activation. J. Am. Chem. Soc. 2017, 139, 18444; (f)
Wang, H.; Jui, N. T., Catalytic Defluoroalkylation of
Trifluoromethylaromatics with Unactivated Alkenes. J. Am.
Chem. Soc. 2018, 140, 163.
M.; Lewis, C.;
Baran, P., Direct, Chemoselective N‐tert‐
9
Prenylation of Indoles by C-H Functionalization. Angew. Chem.
Int. Ed. 2009, 48, 7025; (d) Lipshutz, B. H.; Ellsworth, E. L.;
Dimock, S. H.; Smith, R. A. J., New methodology for conjugate
additions of allylic ligands to α,β-unsaturated ketones: synthetic
and spectroscopic studies. J. Am. Chem. Soc. 1990, 112, 4404; (e)
Hosomi, A.; Saito, M.; Sakurai, H., 2-trimethylsilylmethyl-1,3-
butadiene as a novel reagent for isoprenylation. New access to
ipsenol and ipsdienol, pheromones of Ips paraconfusus.
Tetrahedron Lett. 1979, 20, 429; (f) Jefford, C. W.; Sledeski, A. W.;
Boukouvalas, J., A direct synthesis of (±)-eldanolide via the highly
regioselective prenylation of 2-trimethylsiloxyfuran. Tetrahedron
Lett. 1987, 28, 949; (g) Zhao, L.-M.; Zhang, S.-Q.; Dou, F.; Sun, R.,
Zinc-Mediated Highly α-Regioselective 1,4-Addition of Chalcones
with Prenyl Bromide in THF. Org. Lett. 2013, 15, 5154.
4. (a) Marsden, S. P.; Depew, K. M.; Danishefsky, S. J.,
Stereoselective Total Syntheses of Amauromine and 5-N-
Acetylardeemin. A Concise Route to the Family of "Reverse-
Prenylated" Hexahydropyrroloindole Alkaloids. J. Am. Chem. Soc.
1994, 116, 11143; (b) Schmitt, M.; Grenning, A. J.; Tunge, J. A.,
Intercepted decarboxylative allylations of nitroalkanoates.
Tetrahedron Lett. 2012, 53, 4494; (c) Trost, B. M.; Malhotra, S.;
Chan, W. H., Exercising Regiocontrol in Palladium-Catalyzed
Asymmetric Prenylations and Geranylation: Unifying Strategy
toward Flustramines A and B. J. Am. Chem. Soc. 2011, 133, 7328; (d)
Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A., Transition
Metal-Catalyzed Decarboxylative Allylation and Benzylation
Reactions. Chem. Rev. 2011, 111, 1846.
5. Grenning, A. J.; Boyce, J. H.; Porco, J. A., Rapid Synthesis of
Polyprenylated Acylphloroglucinol Analogs via Dearomative
Conjunctive Allylic Annulation. J. Am. Chem. Soc. 2014, 136, 11799.
6. (a) Matsumori, N.; Okazaki, H.; Nomura, K.; Murata, M.,
Fluorinated cholesterol retains domain-forming activity in
sphingomyelin bilayers. Chem. Phys. Lipids 2011, 164, 401; (b)
Maienfisch, P.; Hall, R. G., The Importance of Fluorine in the Life
Science Industry. CHIMIA 2004, 58, 93; (c) Jarman, M.,
Perflouroarenes as novel and selective protecting reagents;
applications in anticancer drug development. J. Fluor. Chem. 1989,
42, 3; (d) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.;
Meanwell, N. A., Applications of Fluorine in Medicinal Chemistry.
J. Med. Chem. 2015, 58, 8315; (e) Hagmann, W. K., The Many Roles
for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359.
7. (a) Müller, K.; Faeh, C.; Diederich, F., Fluorine in
Pharmaceuticals: Looking Beyond Intuition. Science 2007, 317,
1881; (b) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H., Fluorine
in Pharmaceutical Industry: Fluorine-Containing Drugs
Introduced to the Market in the Last Decade (2001–2011). Chem.
Rev. 2014, 114, 2432.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
16. (a) Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K.,
Photoredox-Controlled Mono- and Di-Multifluoroarylation of
C(sp3)−H Bonds with Aryl Fluorides. Angew. Chem. Int. Ed. 2017,
56, 7266; (b) Nicholls, T. P.; Robertson, J. C.; Gardiner, M. G.;
Bissember, A. C., Identifying the potential of pulsed LED
irradiation
in
synthesis:
copper-photocatalysed
C–F
functionalisation. Chem. Commun. 2018, 54, 4589.
17. Iwasaki, T.; Okamoto, K.; Kuniyasu, H.; Kambe, N., Cu-
catalyzed Reductive Coupling of Perfluoroarenes with 1,3-Dienes.
Chem. Lett. 2017, 46, 1504.
18. (a) Vinogradov, A. S.; Krasnov, V. I.; Platonov, V. E.,
Organozinc reagents from polyfluoroarenes: Preparation and
reactions with allyl halides. Synthesis of allylpolyfluoroarenes.
Russ. J. Org. Chem. 2008, 44, 95; (b) Yu, Y. B.; Fan, S.; Zhang, X.,
Copper‐ and Phosphine‐Ligand‐Free Palladium‐Catalyzed Direct
Allylation of Electron‐Deficient Polyfluoroarenes with Allylic
Chlorides. Chem. Eur. J. 2012, 18, 14643; (c) Weilong, X.; Sukbok,
C., [Cu(NHC)]‐Catalyzed C−H Allylation and Alkenylation of both
Electron‐Deficient and Electron‐Rich (Hetero)arenes with Allyl
Halides. Angew. Chem. Int. Ed. 2016, 55, 1876; (d) Yao, T.; Hirano,
K.; Satoh, T.; Miura, M., Stereospecific Copper‐Catalyzed C-H
Allylation of Electron‐Deficient Arenes with Allyl Phosphates.
Angew. Chem. Int. Ed. 2011, 50, 2990; (e) Li, Z.; Zhang, Y.; Liu, Z.-
Q., Pd-Catalyzed Olefination of Perfluoroarenes with Allyl Esters.
Org. Lett. 2012, 14, 74; (f) Fan, S.; Chen, F.; Zhang, X., Direct
Palladium‐Catalyzed Intermolecular Allylation of Highly
Electron‐Deficient Polyfluoroarenes. Angew. Chem. Int. Ed. 2011,
50, 5918.
8. (a) Hird, M., Fluorinated liquid crystals - properties and
applications. Chem. Soc. Rev. 2007, 36, 2070; (b) Sakamoto, Y.;
Suzuki, T.; Miura, A.; Fujikawa, H.; Tokito, S.; Taga, Y., Synthesis,
Characterization,
and
Electron-Transport
Property
of
Perfluorinated Phenylene Dendrimers. J. Am. Chem. Soc. 2000,
122, 1832.
19. (a) Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem,
C. J.; Lachicotte, R. J.; Holland, P. L., Synthesis and Reactivity of
Low-Coordinate Iron(II) Fluoride Complexes and Their Use in the
9. (a) Theodoridis, G., Chapter
4
Fluorine-Containing
Agrochemicals: An Overview of Recent Developments. In
ACS Paragon Plus Environment